
Laurence Fenart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2052682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Blood–Brain Barrier, an Evolving Concept Based on Technological Advances and Cell–Cell Communications. Cells, 2022, 11, 133.	1.8	16
2	First step to the improvement of the blood brain barrier passage of atazanavir encapsulated in sustainable bioorganic vesicles. International Journal of Pharmaceutics, 2020, 587, 119604.	2.6	4
3	New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules, 2020, 10, 339.	1.8	13
4	Ketone Bodies Promote Amyloid-β1–40 Clearance in a Human in Vitro Blood–Brain Barrier Model. International Journal of Molecular Sciences, 2020, 21, 934.	1.8	42
5	A High Output Method to Isolate Cerebral Pericytes from Mouse. Journal of Visualized Experiments, 2020, , .	0.2	2
6	ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-Î ² Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2018, 64, 1195-1211.	1.2	33
7	Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease. Molecules, 2017, 22, 277.	1.7	222
8	Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules, 2016, 21, 1748.	1.7	94
9	β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Frontiers in Physiology, 2016, 7, 185.	1.3	28
10	Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid. Molecular Neurobiology, 2016, 53, 3205-3215.	1.9	59
11	Bexarotene Promotes Cholesterol Efflux andÂRestricts Apical-to-Basolateral Transport of Amyloid-β Peptides in an In Vitro Model of the Human Blood-Brain Barrier. Journal of Alzheimer's Disease, 2015, 48, 849-862.	1.2	43
12	In vitro discrimination of the role of LRP1 at the BBB cellular level: Focus on brain capillary endothelial cells and brain pericytes. Brain Research, 2015, 1594, 15-26.	1.1	54
13	Stroke-Induced Brain Parenchymal Injury Drives Blood–Brain Barrier Early Leakage Kinetics: A Combined <i>in Vivo</i> / <i>in Vitro</i> Study. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 95-107.	2.4	53
14	Effects of oxysterols on the blood–brain barrier: Implications for Alzheimer's disease. Biochemical and Biophysical Research Communications, 2014, 446, 687-691.	1.0	47
15	Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Research, 2013, 1517, 1-15.	1.1	40
16	Amyloid-β Peptides, Alzheimer's Disease and the Blood-brain Barrier. Current Alzheimer Research, 2013, 10, 1015-1033.	0.7	59
17	Brain Pericytes ABCA1 Expression Mediates Cholesterol Efflux but not Cellular Amyloid-β Peptide Accumulation. Journal of Alzheimer's Disease, 2012, 30, 489-503.	1.2	58
18	A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. Journal of Proteomics, 2011, 75, 628-641.	1.2	25

LAURENCE FENART

#	Article	IF	CITATIONS
19	Modelling the Neurovascular Unit and the Blood-Brain Barrier with the Unique Function of Pericytes. Current Neurovascular Research, 2011, 8, 258-269.	0.4	81
20	A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties. Proteome Science, 2010, 8, 57.	0.7	15
21	Apical-to-Basolateral Transport of Amyloid-β Peptides through Blood-Brain Barrier Cells is Mediated by the Receptor for Advanced Clycation End-Products and is Restricted by P-Glycoprotein. Journal of Alzheimer's Disease, 2010, 22, 849-859.	1.2	120
22	Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood–brain barrier: Use of an in vitro model. Brain Research, 2009, 1249, 34-42.	1.1	73
23	Cerebrovascular protection as a possible mechanism for the protective effects of NXY-059 in preclinical models: An in vitro study. Brain Research, 2009, 1294, 144-152.	1.1	25
24	Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell and Melanoma Research, 2009, 22, 86-98.	1.5	57
25	Peroxisome Proliferator-Activated Receptor-α Activation Protects Brain Capillary Endothelial Cells from Oxygen-Glucose Deprivation-Induced Hyperpermeability in the Blood-Brain Barrier. Current Neurovascular Research, 2009, 6, 181-193.	0.4	56
26	Physiological Pathway for Low-Density Lipoproteins across the Blood-Brain Barrier: Transcytosis through Brain Capillary Endothelial Cells In Vitro. Endothelium: Journal of Endothelial Cell Research, 2008, 15, 254-264.	1.7	89
27	An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicology in Vitro, 2008, 22, 799-811.	1.1	120
28	Modelling of the blood–brain barrier in drug discovery and development. Nature Reviews Drug Discovery, 2007, 6, 650-661.	21.5	522
29	Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2154-2157.	1.0	48
30	The MAP kinase pathway mediates transcytosis induced by TNF-α in anin vitroblood-brain barrier model. European Journal of Neuroscience, 2005, 22, 835-844.	1.2	35
31	Mouse syngenic in vitro blood–brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Laboratory Investigation, 2005, 85, 734-746.	1.7	179
32	In vitro models for the blood–brain barrier. Toxicology in Vitro, 2005, 19, 299-334.	1.1	365
33	Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 745-751.	1.3	93
34	Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood–brain barrier. Brain Research, 2004, 1018, 1-9.	1.1	139
35	Transport Screening of Drug Cocktails Through an in Vitro Blood-Brain Barrier: Is It a Good Strategy for Increasing the Throughput of the Discovery Pipeline?. Pharmaceutical Research, 2004, 21, 756-760.	1.7	29
36	P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. Journal of Neurochemistry, 2004, 87, 1010-1023.	2.1	95

LAURENCE FENART

#	Article	IF	CITATIONS
37	Down-regulation of caveolin-1 in glioma vasculature: Modulation by radiotherapy. Journal of Neuroscience Research, 2004, 75, 291-299.	1.3	29
38	Effects of Î ³ - and Hydroxypropyl-Î ³ -cyclodextrins on the Transport of Doxorubicin across an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1115-1120.	1.3	48
39	Protein Transport in Cerebral Endothelium: In Vitro Transcytosis of Transferrin. , 2003, 89, 277-290.		2
40	High transcytosis of melanotransferrin (P97) across the blood-brain barrier. Journal of Neurochemistry, 2002, 83, 924-933.	2.1	198
41	Receptor-Mediated Transcytosis of Cyclophilin B Through the Blood-Brain Barrier. Journal of Neurochemistry, 2002, 73, 260-270.	2.1	15
42	Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharmaceutical Research, 2002, 19, 976-981.	1.7	150
43	Atteindre les neurones. Biofutur, 2000, 2000, 28-31.	0.0	0
44	Receptor-mediated Transcytosis of Lactoferrin through the Blood-Brain Barrier. Journal of Biological Chemistry, 1999, 274, 7011-7017.	1.6	332
45	Preferential Transfer of 2-Docosahexaenoyl-1-Lysophosphatidylcholine Through an In Vitro Blood-Brain Barrier Over Unesterified Docosahexaenoic Acid. Journal of Neurochemistry, 1999, 72, 338-345.	2.1	74
46	Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharmaceutical Research, 1999, 16, 1836-1842.	1.7	185
47	In vitro model for evaluating drug transport across the blood–brain barrier. Advanced Drug Delivery Reviews, 1999, 36, 165-178.	6.6	319
48	Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an in vitro model of the blood-brain barrier. Pharmaceutical Research, 1998, 15, 993-1000.	1.7	70
49	Monoacylation of ribonuclease A enables its transport across an in vitro model of the blood–brain barrier. Journal of Controlled Release, 1998, 56, 231-237.	4.8	31
50	A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier. Journal of Cell Biology, 1997, 138, 877-889.	2.3	501
51	Physicochemical characterization and in vitro interaction with brain capillary endothelial cells of artificially monoacylated ribonucleases A. International Journal of Peptide Research and Therapeutics, 1997. 4, 313-321.	0.1	2