Mustapha Raihane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2052569/publications.pdf

Version: 2024-02-01

75 papers

1,421 citations

331259 21 h-index 34 g-index

78 all docs 78 docs citations

78 times ranked 1540 citing authors

#	Article	lF	CITATIONS
1	Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications. Progress in Materials Science, 2020, 113, 100670.	16.0	134
2	Short palm tree fibers – Thermoset matrices composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1413-1422.	3.8	123
3	Sustainable coating material based on chitosan-clay composite and paraffin wax for slow-release DAP fertilizer. International Journal of Biological Macromolecules, 2020, 161, 492-502.	3. 6	66
4	Electric Field Alignment of Nanofibrillated Cellulose (NFC) in Silicone Oil: Impact on Electrical Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9418-9425.	4.0	63
5	Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 2008, 293, 140-148.	1.7	61
6	Studies of dielectric relaxation in natural fiber–polymer composites. Journal of Electrostatics, 2009, 67, 717-722.	1.0	60
7	AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites. Journal of Molecular Liquids, 2015, 209, 272-279.	2.3	51
8	Effect of Palm Tree Fiber Orientation on Electrical Properties of Palm Tree Fiber-reinforced Polyester Composites. Journal of Composite Materials, 2010, 44, 1553-1568.	1.2	43
9	Radical copolymerization of 2,2,2-trifluoroethyl methacrylate with cyano compounds for dielectric materials: Synthesis and characterization. Journal of Fluorine Chemistry, 2006, 127, 391-399.	0.9	42
10	Unexpected Alternated Radical Copolymerization of Vinylidene Cyanide with a Fluorinated Vinyl Ether for Superhydrophobic and Highly Oleophobic Films. Macromolecules, 2009, 42, 3532-3539.	2.2	42
11	lonic hopping conductivity in potential batteries separator based on natural rubber–nanocellulose green nanocomposites. Journal of Molecular Liquids, 2015, 211, 792-802.	2.3	33
12	Coreâ€"shell structured poly(vinylidene fluoride)- <i>grafted</i> -BaTiO ₃ nanocomposites prepared <i>via</i> reversible additionâ€"fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors. Polymer Chemistry, 2019, 10, 891-904.	1.9	31
13	Dielectric relaxation studies on nanocomposites of rubber with nanofibrillated cellulose. Journal of Non-Crystalline Solids, 2013, 378, 39-44.	1.5	30
14	Molecular dynamics of nanocomposites natural rubber/cellulose nanowhiskers investigated by impedance spectroscopy. Journal of Molecular Liquids, 2014, 196, 187-191.	2.3	27
15	Organic catalyst for ring opening polymerization of εâ€caprolactone in bulk. Route to starchâ€ <i>graft</i> à€polycaprolactone. Starch/Staerke, 2010, 62, 147-154.	1.1	26
16	Unique Difference in Transition Temperature of Two Similar Fluorinated Side Chain Polymers Forming Hexatic Smectic Phase: Poly{2-(perfluorooctyl)ethyl acrylate} and Poly{2-(perfluorooctyl)ethyl vinyl ether}. Macromolecules, 2014, 47, 3860-3870.	2.2	26
17	Synthesis of poly(ε-caprolactone)-grafted guar gum by surface-initiated ring-opening polymerization. Carbohydrate Polymers, 2019, 220, 95-102.	5.1	25
18	Dielectric behaviour of copolymers based on 2,2,2-trifluoroethyl methacrylate and cyano co-monomers. European Polymer Journal, 2009, 45, 804-812.	2.6	24

#	Article	IF	CITATIONS
19	Experimental study of relaxation process in unidirectional (epoxy/palm tree fiber) composite. Journal of Molecular Liquids, 2010, 154, 61-68.	2.3	24
20	Harnessing synergies in tin-clay catalyst for the preparation of poly($\hat{l}\mu$ -caprolactone)/halloysite nanocomposites. European Polymer Journal, 2016, 81, 1-11.	2.6	24
21	Preparation of fluorinated methacrylate/clay nanocomposite via ⟨i⟩inâ€situ⟨/i⟩ polymerization: Characterization, structure, and properties. Journal of Polymer Science Part A, 2017, 55, 411-418.	2.5	24
22	Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance. Journal of Physical Chemistry C, 2017, 121, 9370-9380.	1.5	23
23	Etude diélectrique de deux copolymÃ"res du méthylcyanure de vinylidÃ"ne avec le 4-fluorostyrÃ"ne et le 4-chlorostyrÃ"ne. Macromolecular Chemistry and Physics, 2000, 201, 2365-2370.	1.1	21
24	Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 2011, 47, 1429-1446.	2.6	21
25	Polylactide/cellulose acetate biocomposites as potential coating membranes for controlled and slow nutrients release from water-soluble fertilizers. Progress in Organic Coatings, 2021, 156, 106255.	1.9	19
26	Dielectric and thermal characteristics of Beidellite nanoclay-reinforced poly(butylene succinate). Materials Chemistry and Physics, 2021, 258, 123855.	2.0	18
27	The relationship of structure, thermal and water vapor permeability barrier properties of poly(butylene succinate)/organomodified beidellite clay bionanocomposites prepared by <i>in situ</i> polycondensation. RSC Advances, 2020, 10, 37314-37326.	1.7	17
28	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 2839-2850.	1.1	16
29	Characterization of the organic materials used in the painting of the vaulted ceiling at the Saadian Tomb of Mulay Ahmed Al-Mansour (Marrakech). Journal of Cultural Heritage, 2014, 15, 300-307.	1.5	15
30	Properties of Coated Controlled Release Diammonium Phosphate Fertilizers Prepared with the Use of Bioâ€based Amino Oil. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 751-763.	0.8	15
31	Radical copolymerization of vinylidene cyanide with 2,2,2â€trifluoroethyl methacrylate: Structure and characterization. Journal of Polymer Science Part A, 2010, 48, 4900-4908.	2.5	14
32	Dielectric properties of block copolymers based on vinylidene fluoride and cyano comonomers. Journal of Non-Crystalline Solids, 2010, 356, 688-694.	1.5	14
33	Novel Copolymers of 2-Phenyl-1,1-dicyanoethylene with 4-Fluoro- and Pentafluorostyrene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 650-655.	1.2	13
34	Isocyanateâ€free Route to Starchâ€graftâ€Polycaprolactone via Carbonyldiimidazole (CDI)â€mediated End Group Conversion. Starch/Staerke, 2010, 62, 90-101.	1.1	13
35	Poly(Îμ-caprolactone)-g-Guar Gum and Poly(Îμ-caprolactone)-g-Halloysite Nanotubes as Coatings for Slow-Release DAP Fertilizer. Journal of Polymers and the Environment, 2020, 28, 2078-2090.	2.4	13
36	Complex Dynamics of a Fluorinated Vinylidene Cyanide Copolymer Highlighted by Dielectric Relaxation Spectroscopy. Macromolecules, 2016, 49, 5104-5114.	2.2	12

#	Article	IF	CITATIONS
37	Radical copolymerization of acrylonitrile with 2,2,2â€trifluoroethyl acrylate for dielectric materials: Structure and characterization. Journal of Polymer Science Part A, 2013, 51, 3856-3866.	2.5	11
38	Bionanocomposites poly(l̃µ-caprolactone)/organomodified Moroccan beidellite clay prepared by <i>in situ</i> iring opening polymerization: Characterizations and properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 201-210.	1.2	11
39	Effect of clay on the dielectric properties of novel fluorinated methacrylate nanocomposites. Polymer Composites, 2019, 40, 3333-3341.	2.3	11
40	Highly thermostable and crystalline poly(butylene adipate) bionanocomposites prepared by $\langle i \rangle$ in situ $\langle i \rangle$ polycondensation with organically modified Moroccan beidellite clay. Polymer International, 2017, 66, 939-949.	1.6	10
41	Thermal degradation behaviour of a nearly alternating copolymer of vinylidene cyanide with 2,2,2-trifluoroethyl methacrylate. Polymer Degradation and Stability, 2011, 96, 204-211.	2.7	9
42	Preparation and dielectric properties of poly(acrylonitrile- <i>co</i> -2,2,2-trifluoroethyl) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf : 1.9	50 547 Td (me
43	Structural analysis and surface wettability of a novel alternated vinylidene cyanide with fluorinated vinyl ether copolymer. Polymer Journal, 2013, 45, 1041-1046.	1.3	8
44	Bismuth complex catalysts for the <i>in situ</i> preparation of polycaprolactone/silicate bionanocomposites. Polymer International, 2014, 63, 709-717.	1.6	8
45	Thermo-sensitive and environmental friendly diblock copolymers obtained via ATRP/ROP combination. Industrial Crops and Products, 2015, 72, 60-68.	2.5	8
46	Sulfonic Acid Functionalized Chitosan as a Sustainable Component for Proton Conductivity Management in PEMs. ChemistrySelect, 2017, 2, 2503-2511.	0.7	8
47	Synthesis and antibacterial behavior of bio-composite materials-based on poly(Îμ-caprolactone)/bentonite. European Polymer Journal, 2021, 156, 110602.	2.6	8
48	Waterborne butyl methacrylate (co)polymers prepared by pickering emulsion polymerization: Insight of their use as coating materials for slow release-fertilizers. European Polymer Journal, 2021, 156, 110598.	2.6	8
49	Etude de la dégradation thermique de deux copolymà res réalisés entre l'acrylonitrile ou le méthacrylonitrile et l'α-acétoxyacrylate de méthyle. Analyse thermogravimétrique et chromatographique en phase gazeuse couplée à la spectrom©trie de masse. Macromolecular Chemistry and Physics. 1997. 198. 3425-3439.	1.1	7
50	Copolymerization of αâ€eyanovinyl acetate with acrylonitrile and methacrylonitrile: Synthesis, characterization, and study of their dielectric behavior. Journal of Applied Polymer Science, 2009, 114, 1094-1104.	1.3	7
51	Organotin-bridged ionic liquid as a solvent-free, leaching-resistive catalyst for ring opening polymerization of ε-caprolactone. New Journal of Chemistry, 2019, 43, 5872-5878.	1.4	7
52	Dielectric and interfacial properties investigation of poly(acrylonitrileâ€ <i>coolymer/organomodified beidellite clay nanocomposites. Polymer Composites, 2020, 41, 4907-4919.</i>	2.3	7
53	Evaluation of core–shell poly(vinylidene fluoride)-grafted-Barium titanate (PVDF-g-BaTiO3) nanocomposites as a cathode binder in batteries. Solid State Ionics, 2020, 356, 115441.	1.3	6
54	Overview on progress in polysaccharides and aliphatic polyesters as coating of water-soluble fertilizers. Journal of Coatings Technology Research, 0 , 1 .	1.2	6

#	Article	IF	CITATIONS
55	Dielectric properties of copolymers based on cyano monomers and methyl αâ€acetoxyacrylate. Polymer International, 2013, 62, 684-692.	1.6	5
56	Synergistic Effect of Halloyosite Nanotube and Nanocellulose on Thermal and Mechanical Properties of Poly (Ethylmethacrylate-co-Acrylonitrile) Bionanocomposites. Journal of Renewable Materials, 2020, 8, 301-317.	1.1	5
57	Novel Copolymers of 4-Fluorostyrene. 10. Some Ring-substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 428-432.	1.2	4
58	Novel Copolymers of Difluoro Ring-substituted 2-Phenyl-1,1-dicyanoethylenes with 4-Fluorostyrene: Synthesis, Structure and Dielectric Study. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 997-1010.	1.2	4
59	In-situ preparation of halloysite nanotube-epoxy thermoset nanocomposites via light-induced cationic polymerization. European Polymer Journal, 2021, 158, 110682.	2.6	4
60	Thermal degradation of two copolymers of vinylidene cyanide and methyl $\hat{l}\pm$ acetoxyacrylate. Thermogravimetric and gas chromatography-mass spectrometry studies. Polymer Degradation and Stability, 1998, 61, 519-525.	2.7	3
61	Novel Copolymers of 4-Fluorostyrene. 2. Alkoxy Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 973-976.	1.2	2
62	Novel Copolymers of 4-Fluorostyrene. 7. Halogen Ring-Disubstituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 95-99.	1.2	2
63	Radical Copolymerization of Fluorine Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes with 4-Fluorostyrene: Synthesis and Characterization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 491-495.	1.2	2
64	Novel Copolymers of 4-Fluorostyrene. 4. Halogen Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 1-4.	1.2	2
65	Novel Copolymers of 4-Fluorostyrene. 8. Some Ring-Trisubstituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 327-331.	1.2	2
66	Characterization of the artist's palette from the polychrome decorations of the El Bahia Palace doors (Marrakesh, Morocco). Journal of Cultural Heritage, 2018, 33, 213-221.	1.5	2
67	Halloysite Containing Thermoset Nanocomposites via Free Radical Photocrosslinking Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 2000197.	1.1	2
68	Interfacial characteristics of poly(εâ€caprolactone)†grafted â€halloysites nanotubes bionanocomposites. Polymer Engineering and Science, 2021, 61, 397-409.	1.5	2
69	Novel Copolymers of 4-Fluorostyrene. 6. Dialkoxy Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 91-94.	1.2	1
70	Novel Copolymers of 4-Fluorostyrene. 5. Alkyl and Alkoxy Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 5-8.	1.2	1
71	Novel Copolymers of 4-Fluorostyrene. 3. Some Ring-Substituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1055-1058.	1.2	1
72	Singling Out the Role of Molecular Weight in the Crystallization Kinetics of Polyester/Clay Bionanocomposites Obtained by In Situ Step Growth Polycondensation. ACS Applied Polymer Materials, 0, , .	2.0	1

#	Article	IF	CITATIONS
73	Preparations of methoxymethyl ? methylstyrenes and 4-(2-chloroethyl) ? methylstyrene. Polymer Bulletin, 1990, 23, 265-269.	1.7	0
74	Novel Copolymers of 4-Fluorostyrene. 9. Some Ring-Disubstituted 2-Phenyl-1,1-dicyanoethylenes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 423-427.	1.2	0
75	Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials. , 2022, , 1-41.		0