Weijun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2051950/publications.pdf

Version: 2024-02-01

567144 580701 29 665 15 25 citations h-index g-index papers 29 29 29 752 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of in vitro stability for two processive endoglucanases as exogenous fibre biocatalysts in pig nutrition. Scientific Reports, 2022, 12, .	1.6	1
2	Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630551.	2.0	94
3	The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structureâ€"Activity Relationships. International Journal of Molecular Sciences, 2021, 22, 1604.	1.8	19
4	Structural characterization of the family GH115 \hat{l} ±-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with \hat{l} ±-arabinofuranosidases. New Biotechnology, 2021, 62, 49-56.	2.4	8
5	Metagenomic Discovery and Characterization of Multi-Functional and Monomodular Processive Endoglucanases as Biocatalysts. Applied Sciences (Switzerland), 2021, 11, 5150.	1.3	5
6	Biochemical properties of a native \hat{l}^2 -1,4-mannanase from Aspergillus aculeatus QH1 and partial characterization of its N-glycosylation. Biochemistry and Biophysics Reports, 2021, 26, 100922.	0.7	2
7	157 Starch and Dry Matter Digestibility Values Are Not Associated with Improved Growth and Feed Efficiency in Weanling Pigs Fed a Therapeutic Multi-antimicrobial-supplemented Diet. Journal of Animal Science, 2021, 99, 85-85.	0.2	1
8	243 Ileal Terminal Starch Hydrolytic Activity Is Increased in Association with Improved Growth and Feed Efficiency in Weaning Pigs Fed a Therapeutic Multi-antimicrobial-supplemented Diet. Journal of Animal Science, 2020, 98, 178-179.	0.2	1
9	A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Scientific Reports, 2019, 9, 13630.	1.6	20
10	Kinetics and regioselectivity of three GH62 α-L-arabinofuranosidases from plant pathogenic fungi. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1070-1078.	1.1	12
11	PSVIII-12 Comparative characterization of intestinal alkaline phosphatase kinetics in young piglets and human Caco-2 cells. Journal of Animal Science, 2019, 97, 282-283.	0.2	2
12	PSVIII-5 Determination of true digestibility and the endogenous outputs of magnesium in corn for growing pigs by using the regression analysis technique. Journal of Animal Science, 2019, 97, 285-285.	0.2	1
13	Constructing arabinofuranosidases for dual arabinoxylan debranching activity. Biotechnology and Bioengineering, 2018, 115, 41-49.	1.7	5
14	A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 2018, 11, 74.	6.2	53
15	A Novel Monomodular and Multifunctional Processive βâ€1,4â€Endoglucanase Has Been Identified and Characterized from Porcine Gut Microbiome. FASEB Journal, 2018, 32, 544.9.	0.2	O
16	Protein–Ligand Empirical Interaction Components for Virtual Screening. Journal of Chemical Information and Modeling, 2017, 57, 1793-1806.	2.5	51
17	Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4- O -methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzyme and Microbial Technology, 2017, 104, 22-28.	1.6	17
18	Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus) after Long-Term Enrichment. Frontiers in Microbiology, 2017, 8, 2504.	1.5	24

#	Article	IF	CITATIONS
19	Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces) Tj ETQq1 1	0.7 8\$ 314	rg B T/Overlo
20	Biochemical and Structural Characterization of a Five-domain GH115 \hat{l} ±-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T. Journal of Biological Chemistry, 2016, 291, 14120-14133.	1.6	18
21	Progressive genomic convergence of two <i>Helicobacter pylori</i> strains during mixed infection of a patient with chronic gastritis. Gut, 2015, 64, 554-561.	6.1	47
22	Biochemical and Structural Analysis of RraA Proteins To Decipher Their Relationships with 4-Hydroxy-4-methyl-2-oxoglutarate/4-Carboxy-4-hydroxy-2-oxoadipate Aldolases. Biochemistry, 2014, 53, 542-553.	1.2	6
23	Elucidation of the Molecular Basis for Arabinoxylan-Debranching Activity of a Thermostable Family GH62 α- <scp>I</scp> -Arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 2014, 80, 5317-5329.	1.4	44
24	Crystal Structure of Reaction Intermediates in Pyruvate Class II Aldolase. Journal of Biological Chemistry, 2012, 287, 36208-36221.	1.6	30
25	Structural and Kinetic Characterization of 4-Hydroxy-4-methyl-2-oxoglutarate/4-Carboxy-4-hydroxy-2-oxoadipate Aldolase, a Protocatechuate Degradation Enzyme Evolutionarily Convergent with the Hpal and DmpG Pyruvate Aldolases. Journal of Biological Chemistry. 2010. 285. 36608-36615.	1.6	28
26	Comparison of Two Metal-Dependent Pyruvate Aldolases Related by Convergent Evolution: Substrate Specificity, Kinetic Mechanism, and Substrate Channeling. Biochemistry, 2010, 49, 3774-3782.	1.2	43
27	Characterization of an Aldolaseâ^'Dehydrogenase Complex That Exhibits Substrate Channeling in the Polychlorinated Biphenyls Degradation Pathway. Biochemistry, 2009, 48, 6551-6558.	1.2	38
28	The role of a conserved histidine residue in a pyruvateâ€specific Class II aldolase. FEBS Letters, 2008, 582, 3385-3388.	1.3	10
29	Purification and Biochemical Characterization of a Pyruvate-Specific Class II Aldolase, Hpal. Biochemistry, 2005, 44, 9447-9455.	1.2	39