Zhe Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2051624/publications.pdf

Version: 2024-02-01

516710 713466 1,665 21 16 21 citations h-index g-index papers 21 21 21 2157 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	39.5	449
2	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	39.5	323
3	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	30.8	198
4	Gradient-morph LiCoO ₂ single crystals with stabilized energy density above 3400 W h L ^{â°'1} . Energy and Environmental Science, 2020, 13, 1865-1878.	30.8	118
5	Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 12782-12793.	10.3	93
6	Stabilizing electrode–electrolyte interfaces to realize high-voltage Li LiCoO ₂ batteries by a sulfonamide-based electrolyte. Energy and Environmental Science, 2021, 14, 6030-6040.	30.8	84
7	Deep elastic strain engineering of bandgap through machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4117-4122.	7.1	70
8	Uranium In Situ Electrolytic Deposition with a Reusable Functional Grapheneâ€Foam Electrode. Advanced Materials, 2021, 33, e2102633.	21.0	52
9	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	21.0	39
10	Competing twinning mechanisms in body-centered cubic metallic nanowires. Scripta Materialia, 2016, 113, 214-217.	5.2	37
11	Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. Journal of Power Sources, 2019, 412, 321-330.	7.8	31
12	The ideal strength of two-dimensional stanene may reach or exceed the Griffith strength estimate. Nanoscale, 2017, 9, 7055-7062.	5.6	29
13	Metallization of diamond. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24634-24639.	7.1	29
14	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	21.0	26
15	Atomically sharp interlayer stacking shifts at anti-phase grain boundaries in overlapping MoS ₂ secondary layers. Nanoscale, 2018, 10, 16692-16702.	5.6	22
16	Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass. Npj Computational Materials, 2021, 7, .	8.7	17
17	RGO-Coated Polyurethane Foam/Segmented Polyurethane Composites as Solid–Solid Phase Change Thermal Interface Material. Polymers, 2020, 12, 3004.	4.5	15
18	Spring-Like Pseudoelectroelasticity of Monocrystalline Cu ₂ S Nanowire. Nano Letters, 2018, 18, 5070-5077.	9.1	11

#	Article	IF	CITATION
19	Inserting Amide into NOTT-101 to Sharply Enhance Volumetric and Gravimetric Methane Storage Working Capacity. Inorganic Chemistry, 2019, 58, 13782-13787.	4.0	10
20	Elastomer-like deformation in high-Poisson's-ratio graphene allotropes may allow tensile strengths beyond theoretical cohesive strength limits. Carbon, 2019, 143, 752-761.	10.3	8
21	Sub-stoichiometry-facilitated oxidation kinetics in a $\hat{\Gamma}$ -TixC-doped Ti-based alloy. Npj Materials Degradation, 2019, 3, .	5.8	4