
Felipe Klein Ricachenevsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205149/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Phytotoxic effects of plastic pollution in crops: what is the size of the problem?. Environmental Pollution, 2022, 292, 118420.	3.7	28
2	Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany, 2022, 196, 104791.	2.0	19
3	The tolerance of grapevine rootstocks to copper excess and to the use of calcium and phosphorus to mitigate its phytotoxicity. Environmental Science and Pollution Research, 2022, 29, 82844-82854.	2.7	2
4	Chromosomal introgressions from <i>Oryza meridionalis</i> into domesticated rice <i>Oryza sativa</i> result in iron tolerance. Journal of Experimental Botany, 2021, 72, 2242-2259.	2.4	13
5	The copper economy response is partially conserved in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2021, 158, 113-124.	2.8	9

6

#	Article	IF	CITATIONS
19	A curated list of genes that affect the plant ionome. Plant Direct, 2020, 4, e00272.	0.8	23
20	Impact of COVID-19 on academic mothers. Science, 2020, 368, 724-724.	6.0	131
21	Physiological responses of rice (Oryza sativa L.) oszip7 loss-of-function plants exposed to varying Zn concentrations. Physiology and Molecular Biology of Plants, 2020, 26, 1349-1359.	1.4	22
22	Lime Protection for Young Vines Exposed to Copper Toxicity. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	10
23	Diagnosis and management of nutrient constraints in grape. , 2020, , 693-710.		3
24	The Mitochondrial Iron-Regulated (MIR) gene is Oryza genus specific and evolved before speciation within the Oryza sativa complex. Planta, 2020, 251, 94.	1.6	7
25	Copper and Zinc in Rhizosphere Soil and Toxicity Potential in White Oats (Avena sativa) Grown in Soil with Long-Term Pig Manure Application. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	6
26	The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports, 2019, 9, 16144.	1.6	70
27	Parent in Science: The Impact of Parenthood on the Scientific Career in Brazil. , 2019, , .		8
28	Genotype Variation in Rice (Oryza sativa L.) Tolerance to Fe Toxicity Might Be Linked to Root Cell Wall Lignification. Frontiers in Plant Science, 2019, 10, 746.	1.7	32
29	Editorial: Improving the Nutritional Content and Quality of Crops: Promises, Achievements, and Future Challenges. Frontiers in Plant Science, 2019, 10, 738.	1.7	10
30	Potential of vermicompost and limestone in reducing copper toxicity in young grapevines grown in Cu-contaminated vineyard soil. Chemosphere, 2019, 226, 421-430.	4.2	24
31	One "OMICS―to integrate them all: ionomics as a result of plant genetics, physiology and evolution. Theoretical and Experimental Plant Physiology, 2019, 31, 71-89.	1.1	17
32	Transcriptional plasticity buffers genetic variation in zinc homeostasis. Scientific Reports, 2019, 9, 19482.	1.6	23
33	Oryza brachyantha A. Chev. et Roehr. Compendium of Plant Genomes, 2018, , 75-85.	0.3	2
34	Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environmental and Experimental Botany, 2018, 149, 51-58.	2.0	19
35	Deep RNAseq indicates protective mechanisms of cold-tolerant indica rice plants during early vegetative stage. Plant Cell Reports, 2018, 37, 347-375.	2.8	31
36	Liming as a means of reducing copper toxicity in black oats. Ciencia Rural, 2018, 48, .	0.3	7

Felipe Klein Ricachenevsky

#	Article	IF	CITATIONS
37	Physiological, Biochemical Changes, and Phytotoxicity Remediation in Agricultural Plant Species Cultivated in Soils Contaminated with Copper and Zinc. , 2018, , 29-76.		2
38	Unraveling Rice Tolerance Mechanisms Against Schizotetranychus oryzae Mite Infestation. Frontiers in Plant Science, 2018, 9, 1341.	1.7	9
39	Checkmite!? Is the Resistance to Phytophagous Mites on Short and Stocky Wild Oryza Species?. Frontiers in Plant Science, 2018, 9, 321.	1.7	16
40	You Shall Not Pass: Root Vacuoles as a Symplastic Checkpoint for Metal Translocation to Shoots and Possible Application to Grain Nutritional Quality. Frontiers in Plant Science, 2018, 9, 412.	1.7	51
41	Crops Responses to Mite Infestation: It's Time to Look at Plant Tolerance to Meet the Farmers' Needs. Frontiers in Plant Science, 2018, 9, 556.	1.7	18
42	Should Heavy Metals Be Monitored in Foods Derived From Soils Fertilized With Animal Waste?. Frontiers in Plant Science, 2018, 9, 732.	1.7	12
43	Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7. Frontiers in Plant Science, 2018, 9, 865.	1.7	41
44	Morphological and kinetic parameters of the uptake of nitrogen forms in clonal peach rootstocks. Scientia Horticulturae, 2018, 239, 205-209.	1.7	14
45	Phytotoxic effects of Baccharis psiadioides (Asteraceae) volatiles on different phases of plant development. Journal of Essential Oil Research, 2017, 29, 313-319.	1.3	2
46	Common Bean Fe Biofortification Using Model Species' Lessons. Frontiers in Plant Science, 2017, 8, 2187.	1.7	20
47	A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genetics and Molecular Biology, 2017, 40, 238-252.	0.6	66
48	Into the Wild: Oryza Species as Sources for Enhanced Nutrient Accumulation and Metal Tolerance in Rice. Frontiers in Plant Science, 2016, 7, 974.	1.7	17
49	AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis. PLoS ONE, 2016, 11, e0150583.	1.1	45
50	Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Science, 2015, 238, 1-12.	1.7	54
51	Got to hide your Zn away: Molecular control of Zn accumulation and biotechnological applications. Plant Science, 2015, 236, 1-17.	1.7	102
52	There and back again, or always there? The evolution of rice combined strategy for Fe uptake. Frontiers in Plant Science, 2014, 5, 189.	1.7	44
53	From soil to seed: micronutrient movement into and within the plant. Frontiers in Plant Science, 2014, 5, 438.	1.7	40
54	Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics, 2014, 6, 1427-1440.	1.0	49

#	Article	IF	CITATIONS
55	Contrasting calcium localization and speciation in leaves of the <i><scp>M</scp>edicago truncatula</i> mutant <i>cod5</i> analyzed via synchrotron X–ray techniques. Plant Journal, 2013, 76, 627-633.	2.8	11
56	Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: examples from Arabidopsis thaliana. Metallomics, 2013, 5, 1133.	1.0	46
57	Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 2013, 64, 2871-2883.	2.4	142
58	Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Frontiers in Plant Science, 2013, 4, 144.	1.7	199
59	kNACking on heaven's door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds?. Frontiers in Plant Science, 2013, 4, 226.	1.7	51
60	Rice grain Fe, Mn and Zn accumulation: How important are flag leaves and seed number?. Plant, Soil and Environment, 2013, 59, 262-266.	1.0	42
61	Iron biofortification in rice: It's a long way to the top. Plant Science, 2012, 190, 24-39.	1.7	160
62	ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biology, 2011, 11, 20.	1.6	75
63	Thyroid hormones alter the adenine nucleotide hydrolysis in adult rat blood serum. BioFactors, 2011, 37, 40-45.	2.6	12
64	Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Molecular Biology Reports, 2010, 37, 3735-3745.	1.0	75
65	Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Molecular Biology, 2010, 11, 73.	3.0	66
66	Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta, 2009, 230, 985-1002.	1.6	191
67	Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Science, 2009, 177, 563-569.	1.7	97
68	Iron deficiency in rice shoots: identification of novel induced genes using RDA and possible relation to leaf senescence. Plant Cell Reports, 2007, 26, 1399-1411.	2.8	16
69	Differentially expressed sequences from a cestode parasite reveals conserved developmental genes in platyhelminthes. Molecular and Biochemical Parasitology, 2005, 144, 114-118.	0.5	14
70	Nociceptive Response and Adenine Nucleotide Hydrolysis in Synaptosomes Isolated from Spinal Cord of Hypothyroid Rats. Neurochemical Research, 2005, 30, 1155-1161.	1.6	14
71	5′-nucleotidase activity is altered by hypo- and hyperthyroidism in platelets from adult rats. Platelets, 2005, 16, 25-30.	1.1	10
72	Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices. Neuroscience Research, 2005, 52, 61-68.	1.0	12

#	Article	IF	CITATIONS
73	Hypothyroidism changes adenine nucleotide hydrolysis in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development. International Journal of Developmental Neuroscience, 2005, 23, 37-44.	0.7	27
74	Identificação de Cultivares de Arroz Contrastantes quanto à Resposta ao Àaro Schizotetranychus oryzae (Acari: Tetranychidae). , 0, , .		0