Carlo Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the Luco dei Marsi DSGSD revealing the first evidence of a basal shear zone in the central Apennine belt (Italy). Geomorphology, 2022, 408, 108249.	2.6	4
2	Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. Journal of Contaminant Hydrology, 2022, 248, 104026.	3.3	14
3	Integration of satellite-based A-DInSAR and geological modeling supporting the prevention from anthropogenic sinkholes: a case study in the urban area of Rome. Geomatics, Natural Hazards and Risk, 2021, 12, 2835-2864.	4.3	6
4	Large-Scale and Deep-Seated Gravitational Slope Deformations on Mars: A Review. Geosciences (Switzerland), 2021, 11, 174.	2.2	5
5	Fold architecture predisposing deep-seated gravitational slope deformations within a flysch sequence in the Northern Apennines (Italy). Geomorphology, 2021, 380, 107629.	2.6	10
6	A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. Environmental Science and Pollution Research, 2021, 28, 35286-35296.	5.3	23
7	Unicompartmental Knee Replacement in Obese Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2021, 10, 3594.	2.4	4
8	3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site. Science of the Total Environment, 2021, 793, 148649.	8.0	24
9	The potential of spatial statistics for the reconstruction of a subsoil model: A case study for the Firenze-Prato-Pistoia Basin, Central Italy. Journal of Applied Geophysics, 2021, 194, 104466.	2.1	3
10	Quantitative Investigation of a Mass Rock Creep Deforming Slope Through A-Din SAR and Geomorphometry. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 165-170.	0.3	2
11	Earthquake-induced landslide scenarios for seismic microzonation: application to the Accumoli area (Rieti, Italy). Bulletin of Earthquake Engineering, 2020, 18, 5655-5673.	4.1	14
12	Relevance of rock slope deformations in local seismic response and microzonation: Insights from the Accumoli case-study (central Apennines, Italy). Engineering Geology, 2020, 266, 105427.	6.3	14
13	Urban Engineered Slope Collapsed in Rome on February 14th, 2018: Results from Remote Sensing Monitoring. Geosciences (Switzerland), 2020, 10, 331.	2.2	3
14	Landslides triggered after the 16 August 2018 Mw 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides, 2020, 17, 1177-1190.	5.4	25
15	Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L'Aquila Basin (central Italy). Geomorphology, 2020, 361, 107194.	2.6	10
16	Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy. Bulletin of Earthquake Engineering, 2020, 18, 5441-5473.	4.1	27
17	Validation of a Shallow Landslide Susceptibility Analysis Through a Real Case Study: An Example of Application in Rome (Italy). , 2020, , 265-280.		0
18	Hydrogeochemical Model Supporting the Remediation Strategy of a Highly Contaminated Industrial Site. Water (Switzerland), 2019, 11, 1371.	2.7	21

CARLO ESPOSITO

#	Article	IF	CITATIONS
19	The Role of Initial Soil Conditions in Shallow Landslide Triggering: Insights from Physically Based Approaches. Geofluids, 2019, 2019, 1-14.	0.7	13
20	Time-dependent modelling of a mountain front retreat due to a fold-to-fault controlled lateral spreading. Tectonophysics, 2019, 773, 228233.	2.2	16
21	Sediment texture in rock avalanche deposits: insights from field and experimental observations. Landslides, 2019, 16, 1629-1643.	5.4	13
22	Gravity Versus Tectonics: The Case of 2016 Amatrice and Norcia (Central Italy) Earthquakes Surface Coseismic Fractures. Journal of Geophysical Research F: Earth Surface, 2019, 124, 994-1017.	2.8	11
23	Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides, 2019, 16, 1221-1241.	5.4	31
24	An Integrated Approach Supporting Remediation of an Aquifer Contaminated with Chlorinated Solvents by a Combination of Adsorption and Biodegradation. Applied Sciences (Switzerland), 2019, 9, 4318.	2.5	18
25	Shallow landslide initiation on terraced slopes: inferences from a physically based approach. Geomatics, Natural Hazards and Risk, 2018, 9, 295-324.	4.3	33
26	Imaging Multi-Age Construction Settlement Behaviour by Advanced SAR Interferometry. Remote Sensing, 2018, 10, 1137.	4.0	37
27	Probabilistic Approach to Provide Scenarios of Earthquake-Induced Slope Failures (PARSIFAL) Applied to the Alcoy Basin (South Spain). Geosciences (Switzerland), 2018, 8, 57.	2.2	11
28	Investigating submerged morphologies by means of the low-budget "GeoDive―method (high) Tj ETQq0 0 0	rgBT/Ove 0.7	erlock 10 Tf 50
29	Potential of satellite InSAR monitoring for landslide Failure Forecasting. , 2018, , 523-530.		Ο
30	Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy). Geomorphology, 2017, 289, 60-77.	2.6	38
31	Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR Interferometry. Geosciences (Switzerland), 2017, 7, 36.	2.2	48
32	Role of Land Use in Landslide Initiation on Terraced Slopes: Inferences from Numerical Modelling. , 2017, , 315-320.		4
33	Multisensor Landslide Monitoring as a Challenge for Early Warning: From Process Based to Statistic Based Approaches. , 2017, , 33-39.		4
34	Mechanism of the Montescaglioso Landslide (Southern Italy) Inferred by Geological Survey and Remote Sensing. , 2017, , 97-106.		4
35	First insights on the potential of Sentinel-1 for landslides detection. Geomatics, Natural Hazards and Risk, 2016, 7, 1874-1883.	4.3	81
36	Potential of satellite InSAR monitoring for landslide Failure Forecasting. , 2016, , 523-530.		2

CARLO ESPOSITO

#	Article	IF	CITATIONS
37	A methodology for a comprehensive assessment of earthquake-induced landslide hazard, with an application to pilot sites in Central Italy. , 2016, , 869-877.		3
38	Reconstruction of a destructive debrisâ€flow event via numerical modeling: the role of valley geometry on flow dynamics. Earth Surface Processes and Landforms, 2015, 40, 1847-1861.	2.5	13
39	Evaluation of shallow landslide-triggering scenarios through a physically based approach: an example of application in the southern Messina area (northeastern Sicily, Italy). Natural Hazards and Earth System Sciences, 2015, 15, 2091-2109.	3.6	42
40	Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 2015, 249, 119-136.	2.6	316
41	Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study. Remote Sensing of Environment, 2015, 168, 219-238.	11.0	38
42	Analysis of a Subsidence Process by Integrating Geological and Hydrogeological Modelling with Satellite InSAR Data. , 2015, , 155-159.		4
43	Mutual interactions between slope-scale gravitational processes and morpho-structural evolution of central Apennines (Italy): review of some selected case histories. Rendiconti Lincei, 2014, 25, 151-165.	2.2	13
44	Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology, 2014, 211, 22-42.	2.6	33
45	Earthquake-reactivated landslide scenarios in Southern Italy based on spectral-matching input analysis. Bulletin of Earthquake Engineering, 2013, 11, 1927-1948.	4.1	11
46	Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history. Tectonophysics, 2013, 605, 96-103.	2.2	17
47	Lateral spreading processes in mountain ranges: Insights from an analogue modelling experiment. Tectonophysics, 2013, 605, 88-95.	2.2	23
48	Landslide Susceptibility Mapping at National Scale: The Italian Case Study. , 2013, , 287-295.		48
49	The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis. Bulletin of Engineering Geology and the Environment, 2011, 70, 559-575.	3.5	32
50	Numerical modelling of Plio-Quaternary slope evolution based on geological constraints: a case study from the Caramanico Valley (Central Apennines, Italy). Geological Society Special Publication, 2011, 351, 201-214.	1.3	15
51	Hydrodynamic and isotopic investigations for evaluating the mechanisms and amount of groundwater seepage through a rockslide dam. Hydrological Processes, 2010, 24, 3510-3520.	2.6	32
52	Slope dynamics of Lake Albano (Rome, Italy): insights from high resolution bathymetry. Earth Surface Processes and Landforms, 2009, 34, 1469-1486.	2.5	13
53	A first attempt to extend a subaerial landslide susceptibility analysis to submerged slopes. , 2008, , 1905-1910.		0
54	Mountain slope deformations along thrust fronts in jointed limestone: An equivalent continuum modelling approach. Geomorphology, 2007, 90, 55-72.	2.6	47

#	Article	IF	CITATIONS
55	Submerged Landslide Morphologies In The Albano Lake (Rome, Italy). , 2007, , 243-250.		10
56	ROCK AVALANCHE AND MOUNTAIN SLOPE DEFORMATION IN A CONVEX DIP-SLOPE: THE CASE OF THE MAIELLA MASSIF, CENTRAL ITALY. , 2006, , 357-376.		9
57	Massive rock-slope failure in the Central Apennines (Italy): the case of the Campo di Giove rock avalanche. Bulletin of Engineering Geology and the Environment, 2004, 63, 1-12.	3.5	30
58	Influence of structural framework on mountain slope deformation in the Maiella anticline (Central) Tj ETQq0 0 0 rg	gBT /Overl 2.6	ock 10 Tf 50
59	Lesson learned from the pre-collapse time series of displacement of the Preonzo landslide (Switzerland). Rendiconti Online Societa Geologica Italiana, 0, 41, 247-250.	0.3	5
60	High-resolution geological model of the gravitational deformation affecting the western slope of Mt. Epomeo (Ischia). Rendiconti Online Societa Geologica Italiana, 0, 35, 104-108.	0.3	1
61	New data and interpretation of the huge clastic deposit of "La Pineda hill―(Vajont valley, northern) Tj ETQq1	1.0.78432 0.3	14 rgBT /Ove
62	A deterministic approach for shallow landslide triggering scenarios in the southern Messina area (north-eastern Sicily, Italy). Rendiconti Online Societa Geologica Italiana, 0, 35, 272-275.	0.3	2
63	Il ricorso alla guerra di mina durante la Prima Guerra Mondiale sul fronte trentino: analisi delle morfologie di superficie come testimonianza delle operazioni belliche. Il Monte Pasubio. Rendiconti Online Societa Geologica Italiana, 0, 36, 63-66.	0.3	0
64	Earthquake-induced reactivation of landslides under variable hydrostatic conditions: evaluation at regional scale and implications for risk assessment. Landslides, 0, , 1.	5.4	4