Carlo Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/205111/publications.pdf Version: 2024-02-01

Ŧ	ARTICLE	IF	CHATIONS
1	Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 2015, 249, 119-136.	2.6	316
2	First insights on the potential of Sentinel-1 for landslides detection. Geomatics, Natural Hazards and Risk, 2016, 7, 1874-1883.	4.3	81
3	Assessment of Landslide Pre-Failure Monitoring and Forecasting Using Satellite SAR Interferometry. Geosciences (Switzerland), 2017, 7, 36.	2.2	48
4	Landslide Susceptibility Mapping at National Scale: The Italian Case Study. , 2013, , 287-295.		48
5	Influence of structural framework on mountain slope deformation in the Maiella anticline (Central) Tj ETQq1 1	0.784314 r 2.6	gBT /Overloc 47
6	Mountain slope deformations along thrust fronts in jointed limestone: An equivalent continuum modelling approach. Geomorphology, 2007, 90, 55-72.	2.6	47
7	Evaluation of shallow landslide-triggering scenarios through a physically based approach: an example of application in the southern Messina area (northeastern Sicily, Italy). Natural Hazards and Earth System Sciences, 2015, 15, 2091-2109.	3.6	42
8	Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study. Remote Sensing of Environment, 2015, 168, 219-238.	11.0	38
9	Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (Central Apennines, Italy). Geomorphology, 2017, 289, 60-77.	2.6	38
10	Imaging Multi-Age Construction Settlement Behaviour by Advanced SAR Interferometry. Remote Sensing, 2018, 10, 1137.	4.0	37
11	Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology, 2014, 211, 22-42.	2.6	33
12	Shallow landslide initiation on terraced slopes: inferences from a physically based approach. Geomatics, Natural Hazards and Risk, 2018, 9, 295-324.	4.3	33
13	Hydrodynamic and isotopic investigations for evaluating the mechanisms and amount of groundwater seepage through a rockslide dam. Hydrological Processes, 2010, 24, 3510-3520.	2.6	32
14	The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis. Bulletin of Engineering Geology and the Environment, 2011, 70, 559-575.	3.5	32
15	Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides, 2019, 16, 1221-1241.	5.4	31
16	Massive rock-slope failure in the Central Apennines (Italy): the case of the Campo di Giove rock avalanche. Bulletin of Engineering Geology and the Environment, 2004, 63, 1-12.	3.5	30
17	Geological and geotechnical models definition for 3rd level seismic microzonation studies in Central Italy. Bulletin of Earthquake Engineering, 2020, 18, 5441-5473.	4.1	27
18	Landslides triggered after the 16 August 2018 Mw 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides, 2020, 17, 1177-1190.	5.4	25

CARLO ESPOSITO

#	Article	IF	CITATIONS
19	3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site. Science of the Total Environment, 2021, 793, 148649.	8.0	24
20	Lateral spreading processes in mountain ranges: Insights from an analogue modelling experiment. Tectonophysics, 2013, 605, 88-95.	2.2	23
21	A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. Environmental Science and Pollution Research, 2021, 28, 35286-35296.	5.3	23
22	Hydrogeochemical Model Supporting the Remediation Strategy of a Highly Contaminated Industrial Site. Water (Switzerland), 2019, 11, 1371.	2.7	21
23	An Integrated Approach Supporting Remediation of an Aquifer Contaminated with Chlorinated Solvents by a Combination of Adsorption and Biodegradation. Applied Sciences (Switzerland), 2019, 9, 4318.	2.5	18
24	Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history. Tectonophysics, 2013, 605, 96-103.	2.2	17
25	Time-dependent modelling of a mountain front retreat due to a fold-to-fault controlled lateral spreading. Tectonophysics, 2019, 773, 228233.	2.2	16
26	Numerical modelling of Plio-Quaternary slope evolution based on geological constraints: a case study from the Caramanico Valley (Central Apennines, Italy). Geological Society Special Publication, 2011, 351, 201-214.	1.3	15
27	Earthquake-induced landslide scenarios for seismic microzonation: application to the Accumoli area (Rieti, Italy). Bulletin of Earthquake Engineering, 2020, 18, 5655-5673.	4.1	14
28	Relevance of rock slope deformations in local seismic response and microzonation: Insights from the Accumoli case-study (central Apennines, Italy). Engineering Geology, 2020, 266, 105427.	6.3	14
29	Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. Journal of Contaminant Hydrology, 2022, 248, 104026.	3.3	14
30	Slope dynamics of Lake Albano (Rome, Italy): insights from high resolution bathymetry. Earth Surface Processes and Landforms, 2009, 34, 1469-1486.	2.5	13
31	Mutual interactions between slope-scale gravitational processes and morpho-structural evolution of central Apennines (Italy): review of some selected case histories. Rendiconti Lincei, 2014, 25, 151-165.	2.2	13
32	Reconstruction of a destructive debrisâ€flow event via numerical modeling: the role of valley geometry on flow dynamics. Earth Surface Processes and Landforms, 2015, 40, 1847-1861.	2.5	13
33	The Role of Initial Soil Conditions in Shallow Landslide Triggering: Insights from Physically Based Approaches. Geofluids, 2019, 2019, 1-14.	0.7	13
34	Sediment texture in rock avalanche deposits: insights from field and experimental observations. Landslides, 2019, 16, 1629-1643.	5.4	13
35	Earthquake-reactivated landslide scenarios in Southern Italy based on spectral-matching input analysis. Bulletin of Earthquake Engineering, 2013, 11, 1927-1948.	4.1	11
36	Probabilistic Approach to Provide Scenarios of Earthquake-Induced Slope Failures (PARSIFAL) Applied to the Alcoy Basin (South Spain). Geosciences (Switzerland), 2018, 8, 57.	2.2	11

CARLO ESPOSITO

#	Article	IF	CITATIONS
37	Gravity Versus Tectonics: The Case of 2016 Amatrice and Norcia (Central Italy) Earthquakes Surface Coseismic Fractures. Journal of Geophysical Research F: Earth Surface, 2019, 124, 994-1017.	2.8	11
38	Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L'Aquila Basin (central Italy). Geomorphology, 2020, 361, 107194.	2.6	10
39	Fold architecture predisposing deep-seated gravitational slope deformations within a flysch sequence in the Northern Apennines (Italy). Geomorphology, 2021, 380, 107629.	2.6	10
40	Submerged Landslide Morphologies In The Albano Lake (Rome, Italy). , 2007, , 243-250.		10
41	ROCK AVALANCHE AND MOUNTAIN SLOPE DEFORMATION IN A CONVEX DIP-SLOPE: THE CASE OF THE MAIELLA MASSIF, CENTRAL ITALY. , 2006, , 357-376.		9
42	Investigating submerged morphologies by means of the low-budget "GeoDive―method (high) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 5
43	Integration of satellite-based A-DInSAR and geological modeling supporting the prevention from anthropogenic sinkholes: a case study in the urban area of Rome. Geomatics, Natural Hazards and Risk, 2021, 12, 2835-2864.	4.3	6
44	Large-Scale and Deep-Seated Gravitational Slope Deformations on Mars: A Review. Geosciences (Switzerland), 2021, 11, 174.	2.2	5

45	Lesson learned from the pre-collapse time series of displacement of the Preonzo landslide (Switzerland). Rendiconti Online Societa Geologica Italiana, 0, 41, 247-250.	0.3	5
46	Unicompartmental Knee Replacement in Obese Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2021, 10, 3594.	2.4	4
47	Analysis of a Subsidence Process by Integrating Geological and Hydrogeological Modelling with Satellite InSAR Data. , 2015, , 155-159.		4
48	Role of Land Use in Landslide Initiation on Terraced Slopes: Inferences from Numerical Modelling. , 2017, , 315-320.		4
49	Multisensor Landslide Monitoring as a Challenge for Early Warning: From Process Based to Statistic Based Approaches. , 2017, , 33-39.		4
50	Mechanism of the Montescaglioso Landslide (Southern Italy) Inferred by Geological Survey and Remote Sensing. , 2017, , 97-106.		4
51	Earthquake-induced reactivation of landslides under variable hydrostatic conditions: evaluation at regional scale and implications for risk assessment. Landslides, 0, , 1.	5.4	4
52	Investigation of the Luco dei Marsi DSGSD revealing the first evidence of a basal shear zone in the central Apennine belt (Italy). Geomorphology, 2022, 408, 108249.	2.6	4
53	Urban Engineered Slope Collapsed in Rome on February 14th, 2018: Results from Remote Sensing Monitoring. Geosciences (Switzerland), 2020, 10, 331.	2.2	3
54	The potential of spatial statistics for the reconstruction of a subsoil model: A case study for the Firenze-Prato-Pistoia Basin, Central Italy. Journal of Applied Geophysics, 2021, 194, 104466.	2.1	3

4

CARLO ESPOSITO

#	Article	IF	CITATIONS
55	A methodology for a comprehensive assessment of earthquake-induced landslide hazard, with an application to pilot sites in Central Italy. , 2016, , 869-877.		3
56	Potential of satellite InSAR monitoring for landslide Failure Forecasting. , 2016, , 523-530.		2
57	A deterministic approach for shallow landslide triggering scenarios in the southern Messina area (north-eastern Sicily, Italy). Rendiconti Online Societa Geologica Italiana, 0, 35, 272-275.	0.3	2
58	Quantitative Investigation of a Mass Rock Creep Deforming Slope Through A-Din SAR and Geomorphometry. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 165-170.	0.3	2
59	High-resolution geological model of the gravitational deformation affecting the western slope of Mt. Epomeo (Ischia). Rendiconti Online Societa Geologica Italiana, 0, 35, 104-108.	0.3	1
60	A first attempt to extend a subaerial landslide susceptibility analysis to submerged slopes. , 2008, , 1905-1910.		0
61	New data and interpretation of the huge clastic deposit of "La Pineda hill―(Vajont valley, northern) Tj ETQq1	1.0,78431 0.3	l4 rgBT /Ove
62	Il ricorso alla guerra di mina durante la Prima Guerra Mondiale sul fronte trentino: analisi delle morfologie di superficie come testimonianza delle operazioni belliche. Il Monte Pasubio. Rendiconti Online Societa Geologica Italiana, 0, 36, 63-66.	0.3	0
63	Potential of satellite InSAR monitoring for landslide Failure Forecasting. , 2018, , 523-530.		0
64	Validation of a Shallow Landslide Susceptibility Analysis Through a Real Case Study: An Example of Application in Rome (Italy). , 2020, , 265-280.		0