Leonardo Nimrichter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2051060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From fundamental biology to the search for innovation: The story of fungal extracellular vesicles. European Journal of Cell Biology, 2022, 101, 151205.	1.6	9
2	Silver Chitosan Nanocomposites are Effective to Combat Sporotrichosis. Frontiers in Nanotechnology, 2022, 4, .	2.4	6
3	Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans. MBio, 2022, 13, e0030122.	1.8	24
4	Recognition of Cell Wall Mannosylated Components as a Conserved Feature for Fungal Entrance, Adaptation and Survival Within Trophozoites of Acanthamoeba castellanii and Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	4
5	Isolation of Extracellular Vesicles from Candida auris. Methods in Molecular Biology, 2022, , 173-178.	0.4	2
6	Extracellular Vesicle Formation in Cryptococcus deuterogattii Impacts Fungal Virulence and Requires the <i>NOP16</i> Gene. Infection and Immunity, 2022, 90, .	1.0	4
7	Dexamethasone and Methylprednisolone Promote Cell Proliferation, Capsule Enlargement, and in vivo Dissemination of C. neoformans. Frontiers in Fungal Biology, 2021, 2, .	0.9	2
8	Small Molecule Analysis of Extracellular Vesicles Produced by Cryptococcus gattii: Identification of a Tripeptide Controlling Cryptococcal Infection in an Invertebrate Host Model. Frontiers in Immunology, 2021, 12, 654574.	2.2	21
9	Antifungal Activity of Acylhydrazone Derivatives against <i>Sporothrix</i> spp Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
10	Silver chitosan nanocomposites as a potential treatment for superficial candidiasis. Medical Mycology, 2021, 59, 993-1005.	0.3	11
11	Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Frontiers in Genetics, 2021, 12, 648524.	1.1	13
12	The paradoxical and still obscure properties of fungal extracellular vesicles. Molecular Immunology, 2021, 135, 137-146.	1.0	23
13	Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. MSystems, 2021, 6, e0082221.	1.7	27
14	Host cell membrane microdomains and fungal infection. Cellular Microbiology, 2021, 23, e13385.	1.1	3
15	<i>Cryptococcus</i> extracellular vesicles properties and their use as vaccine platforms. Journal of Extracellular Vesicles, 2021, 10, e12129.	5.5	47
16	X-linked immunodeficient (XID) mice exhibit high susceptibility to Cryptococcus gattii infection. Scientific Reports, 2021, 11, 18397.	1.6	7
17	Fungal Infections of the Central Nervous System. , 2021, , 736-748.		0
18	Fungal Extracellular Vesicles as a Potential Strategy for Vaccine Development. Current Topics in Microbiology and Immunology, 2021, 432, 121-138.	0.7	2

#	Article	IF	CITATIONS
19	Current Microscopy Strategies to Image Fungal Vesicles: From the Intracellular Trafficking and Secretion to the Inner Structure of Isolated Vesicles. Current Topics in Microbiology and Immunology, 2021, 432, 139-159.	0.7	0
20	Characterization of Extracellular Vesicles Produced by Aspergillus fumigatus Protoplasts. MSphere, 2020, 5, .	1.3	43
21	Protective Efficacy of Lectin-Fc(IgG) Fusion Proteins In Vitro and in a Pulmonary Aspergillosis In Vivo Model. Journal of Fungi (Basel, Switzerland), 2020, 6, 250.	1.5	6
22	Media matters! Alterations in the loading and release of <scp> <i>Histoplasma capsulatum</i> </scp> extracellular vesicles in response to different nutritional milieus. Cellular Microbiology, 2020, 22, e13217.	1.1	49
23	Protective effect of fungal extracellular vesicles against murine candidiasis. Cellular Microbiology, 2020, 22, e13238.	1.1	51
24	Histoplasma capsulatum Glycans From Distinct Genotypes Share Structural and Serological Similarities to Cryptococcus neoformans Glucuronoxylomannan. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565571.	1.8	4
25	Host membrane glycosphingolipids and lipid microdomains facilitate <i>Histoplasma capsulatum</i> internalisation by macrophages. Cellular Microbiology, 2019, 21, e12976.	1.1	17
26	Role of lipid transporters in fungal physiology and pathogenicity. Computational and Structural Biotechnology Journal, 2019, 17, 1278-1289.	1.9	18
27	Multi-omics Signature of <i>Candida auris</i> , an Emerging and Multidrug-Resistant Pathogen. MSystems, 2019, 4, .	1.7	65
28	Exploiting Lipids to Develop Anticryptococcal Vaccines. Current Tropical Medicine Reports, 2019, 6, 55-63.	1.6	3
29	A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in <i>Cryptococcus gattii</i> . MSphere, 2019, 4, .	1.3	67
30	<i>Cryptococcus neoformans</i> Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model. MBio, 2019, 10, .	1.8	63
31	Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Scientific Reports, 2018, 8, 1346.	1.6	21
32	Extracellular vesicles and vesicle-free secretome of the protozoa <i>Acanthamoeba castellanii</i> under homeostasis and nutritional stress and their damaging potential to host cells. Virulence, 2018, 9, 818-836.	1.8	68
33	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
34	Fungal Extracellular Vesicles. , 2018, , 333-333.		0
35	A glucuronoxylomannan-like glycan produced by Trichosporon mucoides. Fungal Genetics and Biology, 2018, 121, 46-55.	0.9	9
36	Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Scientific Reports, 2018, 8, 8065.	1.6	66

#	Article	IF	CITATIONS
37	What Is New? Recent Knowledge on Fungal Extracellular Vesicles. Current Fungal Infection Reports, 2017, 11, 141-147.	0.9	11
38	Characterization of the antifungal functions of a WGA-Fc (IgG2a) fusion protein binding to cell wall chitin oligomers. Scientific Reports, 2017, 7, 12187.	1.6	34
39	Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Frontiers in Microbiology, 2016, 7, 1034.	1.5	74
40	Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum. MSphere, 2016, 1, .	1.3	74
41	Analysis of Yeast Extracellular Vesicles. Methods in Molecular Biology, 2016, 1459, 175-190.	0.4	24
42	Potential Roles of Fungal Extracellular Vesicles during Infection. MSphere, 2016, 1, .	1.3	95
43	The benefits of scientific mobility and international collaboration. FEMS Microbiology Letters, 2016, 363, .	0.7	20
44	The putative autophagy regulator Atg7 affects the physiology and pathogenic mechanisms of Cryptococcus neoformans. Future Microbiology, 2016, 11, 1405-1419.	1.0	30
45	Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Scientific Reports, 2016, 6, 21765.	1.6	26
46	Lipid droplet levels vary heterogeneously in response to simulated gastrointestinal stresses in different probiotic Saccharomyces cerevisiae strains. Journal of Functional Foods, 2016, 21, 193-200.	1.6	8
47	The Einstein-Brazil Fogarty: A decade of synergy. Brazilian Journal of Microbiology, 2015, 46, 945-955.	0.8	2
48	Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. MBio, 2015, 6, e00647.	1.8	124
49	Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?. Applied Microbiology and Biotechnology, 2015, 99, 6563-6570.	1.7	74
50	Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, 2015, 5, 7763.	1.6	185
51	Compositional and immunobiological analyses of extracellular vesicles released by <i>Candida albicans</i> . Cellular Microbiology, 2015, 17, 389-407.	1.1	242
52	Traveling into Outer Space: Unanswered Questions about Fungal Extracellular Vesicles. PLoS Pathogens, 2015, 11, e1005240.	2.1	63
53	Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathogens, 2014, 10, e1003832.	2.1	96
54	The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. Journal of Proteomics, 2014, 97, 177-186.	1.2	109

#	Article	IF	CITATIONS
55	Use of a stainless steel washer platform to study Acinetobacter baumannii adhesion and biofilm formation on abiotic surfaces. Microbiology (United Kingdom), 2013, 159, 2594-2604.	0.7	31
56	Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Current Opinion in Microbiology, 2013, 16, 414-420.	2.3	74
57	Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis. Fungal Genetics and Biology, 2013, 60, 64-73.	0.9	31
58	Definition of Molecular Determinants of Prostate Cancer Cell Bone Extravasation. Cancer Research, 2013, 73, 942-952.	0.4	61
59	Antibody Binding to <i>Cryptococcus neoformans</i> Impairs Budding by Altering Capsular Mechanical Properties. Journal of Immunology, 2013, 190, 317-323.	0.4	36
60	Inhibition of Candida parapsilosis Fatty Acid Synthase (Fas2) Induces Mitochondrial Cell Death in Serum. PLoS Pathogens, 2012, 8, e1002879.	2.1	9
61	Chitin-Like Molecules Associate with Cryptococcus neoformans Glucuronoxylomannan To Form a Glycan Complex with Previously Unknown Properties. Eukaryotic Cell, 2012, 11, 1086-1094.	3.4	28
62	A Paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan. Fungal Genetics and Biology, 2012, 49, 943-954.	0.9	22
63	In good company: association between fungal glycans generates molecular complexes with unique functions. Frontiers in Microbiology, 2012, 3, 249.	1.5	14
64	The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in <i>Candida albicans</i> . Molecular Microbiology, 2012, 84, 166-180.	1.2	123
65	Capsules from Pathogenic and Non-Pathogenic Cryptococcus spp. Manifest Significant Differences in Structure and Ability to Protect against Phagocytic Cells. PLoS ONE, 2012, 7, e29561.	1.1	61
66	Vesicular transport systems in fungi. Future Microbiology, 2011, 6, 1371-1381.	1.0	60
67	The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genetics and Biology, 2011, 48, 192-199.	0.9	42
68	Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochemical and Biophysical Research Communications, 2011, 406, 423-429.	1.0	40
69	Fungal Polysaccharides: Biological Activity Beyond the Usual Structural Properties. Frontiers in Microbiology, 2011, 2, 171.	1.5	28
70	Fungal Glucosylceramides: From Structural Components to Biologically Active Targets of New Antimicrobials. Frontiers in Microbiology, 2011, 2, 212.	1.5	54
71	Histoplasma capsulatum Heat-Shock 60 Orchestrates the Adaptation of the Fungus to Temperature Stress. PLoS ONE, 2011, 6, e14660.	1.1	42
72	Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Molecular Microbiology, 2011, 81, 206-218.	1.2	78

#	Article	IF	CITATIONS
73	Glucuronoxylomannan from Cryptococcus neoformans Down-regulates the Enzyme 6-Phosphofructo-1-kinase of Macrophages. Journal of Biological Chemistry, 2011, 286, 14820-14829.	1.6	11
74	Agglutination of <i>Histoplasma capsulatum</i> by IgG Monoclonal Antibodies against Hsp60 Impacts Macrophage Effector Functions. Infection and Immunity, 2011, 79, 918-927.	1.0	31
75	Chronological Aging Is Associated with Biophysical and Chemical Changes in the Capsule of Cryptococcus neoformans. Infection and Immunity, 2011, 79, 4990-5000.	1.0	45
76	Abstract 1547: Characterization of receptor-ligand interactions between head and neck circulating tumor cells and E-selectin. , 2011, , .		0
77	Biochemical characterization of an ecto-ATP diphosphohydrolase activity in Candida parapsilosis and its possible role in adenosine acquisition and pathogenesis. FEMS Yeast Research, 2010, 10, 735-746.	1.1	16
78	Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cellular Microbiology, 2010, 12, 740-753.	1.1	47
79	The Vacuolar Ca 2+ Exchanger Vcx1 Is Involved in Calcineurin-Dependent Ca 2+ Tolerance and Virulence in Cryptococcus neoformans. Eukaryotic Cell, 2010, 9, 1798-1805.	3.4	44
80	Immunomodulatory Effects of Serotype B Glucuronoxylomannan from <i>Cryptococcus gattii</i> Correlate with Polysaccharide Diameter. Infection and Immunity, 2010, 78, 3861-3870.	1.0	73
81	Extracellular Vesicles from <i>Cryptococcus neoformans</i> Modulate Macrophage Functions. Infection and Immunity, 2010, 78, 1601-1609.	1.0	238
82	Biogenesis of extracellular vesicles in yeast. Communicative and Integrative Biology, 2010, 3, 533-535.	0.6	41
83	Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis. PLoS ONE, 2010, 5, e11113.	1.1	215
84	The still obscure attributes of cryptococcal glucuronoxylomannan. Medical Mycology, 2009, 47, 783-788.	0.3	20
85	Role for Chitin and Chitooligomers in the Capsular Architecture of <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2009, 8, 1543-1553.	3.4	54
86	Structural and functional properties of the Trichosporon asahii glucuronoxylomannan. Fungal Genetics and Biology, 2009, 46, 496-505.	0.9	49
87	Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genetics and Biology, 2009, 46, 956-963.	0.9	59
88	The Elastic Properties of the Cryptococcus neoformans Capsule. Biophysical Journal, 2009, 97, 937-945.	0.2	38
89	Identification of iGb3 and iGb4 in melanoma B16F10-Nex2 cells and the iNKT cell-mediated antitumor effect of dendritic cells primed with iGb3. Molecular Cancer, 2009, 8, 116.	7.9	15
90	Capsule of <i>Cryptococcus neoformans</i> grows by enlargement of polysaccharide molecules. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1228-1233.	3.3	94

#	Article	IF	CITATIONS
91	Effective Topical Treatment of Subcutaneous Murine B16F10-Nex2 Melanoma By the Antimicrobial Peptide Gomesin. Neoplasia, 2008, 10, 61-68.	2.3	85
92	Extracellular Vesicles Produced by <i>Cryptococcus neoformans</i> Contain Protein Components Associated with Virulence. Eukaryotic Cell, 2008, 7, 58-67.	3.4	491
93	<i>Cryptococcus neoformans</i> Capsular Polysaccharide and Exopolysaccharide Fractions Manifest Physical, Chemical, and Antigenic Differences. Eukaryotic Cell, 2008, 7, 319-327.	3.4	104
94	A role for vesicular transport of macromolecules across cell walls in fungal pathogenesis. Communicative and Integrative Biology, 2008, 1, 37-39.	0.6	49
95	In Vitro Activity of the Antifungal Plant Defensin RsAFP2 against <i>Candida</i> Isolates and Its In Vivo Efficacy in Prophylactic Murine Models of Candidiasis. Antimicrobial Agents and Chemotherapy, 2008, 52, 4522-4525.	1.4	79
96	E-selectin receptors on human leukocytes. Blood, 2008, 112, 3744-3752.	0.6	131
97	Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules?. Lipid Insights, 2008, 2, LPI.S1000.	1.0	96
98	Sophisticated Functions for a Simple Molecule: The Role of Glucosylceramides in Fungal Cells. Lipid Insights, 2008, 2, LPI.S1014.	1.0	4
99	Monoclonal Antibody to Fungal Glucosylceramide Protects Mice against Lethal <i>Cryptococcus neoformans</i> Infection. Vaccine Journal, 2007, 14, 1372-1376.	3.2	74
100	Binding of Glucuronoxylomannan to the CD14 Receptor in Human A549 Alveolar Cells Induces Interleukin-8 Production. Vaccine Journal, 2007, 14, 94-98.	3.2	30
101	Self-Aggregation of Cryptococcus neoformans Capsular Glucuronoxylomannan Is Dependent on Divalent Cations. Eukaryotic Cell, 2007, 6, 1400-1410.	3.4	135
102	Vesicular Polysaccharide Export in Cryptococcus neoformans Is a Eukaryotic Solution to the Problem of Fungal Trans-Cell Wall Transport. Eukaryotic Cell, 2007, 6, 48-59.	3.4	454
103	An ectophosphatase activity inCandida parapsilosisinfluences the interaction of fungi with epithelial cells. FEMS Yeast Research, 2007, 7, 621-628.	1.1	33
104	Gomesin, a peptide produced by the spiderAcanthoscurria gomesiana, is a potent anticryptococcal agent that acts in synergism with fluconazole. FEMS Microbiology Letters, 2007, 274, 279-286.	0.7	47
105	Biology and pathogenesis of <i>Fonsecaea pedrosoi</i> , the major etiologic agent of chromoblastomycosis. FEMS Microbiology Reviews, 2007, 31, 570-591.	3.9	95
106	An ectophosphatase activity inCryptococcus neoformans. FEMS Yeast Research, 2006, 6, 1010-1017.	1.1	38
107	Glucuronoxylomannan-mediated interaction of Cryptococcus neoformans with human alveolar cells results in fungal internalization and host cell damage. Microbes and Infection, 2006, 8, 493-502.	1.0	58
108	The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes and Infection, 2005, 7, 789-798.	1.0	80

#	Article	IF	CITATIONS
109	Exposure of Human Leukemic Cells to Direct Electric Current: Generation of Toxic Compounds Inducing Cell Death by Different Mechanisms. Cell Biochemistry and Biophysics, 2005, 42, 061-074.	0.9	26
110	Structure, Cellular Distribution, Antigenicity, and Biological Functions of Fonsecaea pedrosoi Ceramide Monohexosides. Infection and Immunity, 2005, 73, 7860-7868.	1.0	49
111	Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1686, 200-208.	1.2	57
112	A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes and Infection, 2004, 6, 657-665.	1.0	64
113	Intact cell adhesion to glycan microarrays. Glycobiology, 2003, 14, 197-203.	1.3	109
114	Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids. Neurochemical Research, 2002, 27, 847-855.	1.6	31
115	The still obscure attributes of cryptococcal glucuronoxylomannan. Medical Mycology, 0, , 1-7.	0.3	2