Yohei Hattori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050755/publications.pdf

Version: 2024-02-01

623734 552781 26 733 14 26 h-index citations g-index papers 28 28 28 636 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Luminescence, Stability, and Proton Response of an Openâ€Shell (3,5â€Dichloroâ€4â€pyridyl)bis(2,4,6â€trichlorophenyl)methyl Radical. Angewandte Chemie - International Edition, 2014, 53, 11845-11848.	13.8	176
2	Enhanced Luminescent Properties of an Openâ€Shell (3,5â€Dichloroâ€4â€pyridyl)bis(2,4,6â€trichlorophenyl)methyl Radical by Coordination to Gold. Angewandte Chemie - International Edition, 2015, 54, 3731-3734.	13.8	78
3	Highly photostable luminescent open-shell (3,5-dihalo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radicals: significant effects of halogen atoms on their photophysical and photochemical properties. RSC Advances, 2015, 5, 64802-64805.	3.6	52
4	Synergistic luminescence enhancement of a pyridyl-substituted triarylmethyl radical based on fluorine substitution and coordination to gold. Chemical Communications, 2016, 52, 13393-13396.	4.1	43
5	Bis(dipyrrinato)zinc(II) Complexes: Emission in the Solid State. Inorganic Chemistry, 2016, 55, 5732-5734.	4.0	40
6	Cation-responsive turn-on fluorescence and absence of heavy atom effects of pyridyl-substituted triarylmethyl radicals. Chemical Communications, 2018, 54, 615-618.	4.1	38
7	Mechano-, thermo-, solvato-, and vapochromism in bis(acetato-l̂° ¹ O)[4′-(4-(diphenylamino)phenyl)](2,2′:6′,2′′-terpyridine-l̂° ³ <td>)>⋈,N′,I</td> <td>Nâ€3′)zind</td>)> ⋈,N ′,I	Nâ € 3′)zind
8	Luminescent Monoâ€, Diâ€, and Triradicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes. Chemistry - A European Journal, 2019, 25, 15463-15471.	3.3	33
9	Photoinduced swing of a diarylethene thin broad sword shaped crystal: a study on the detailed mechanism. Chemical Science, 2020, 11, 12307-12315.	7.4	29
10	Intramolecular Ferromagnetic Radical–Cull Coupling in a Cull Complex Ligated with Pyridyl-Substituted Triarylmethyl Radicals. Inorganic Chemistry, 2015, 54, 4186-4188.	4.0	23
11	A simple zinc(<scp>ii</scp>) complex that features multi-functional luminochromism induced by reversible ligand dissociation. Chemical Communications, 2017, 53, 3657-3660.	4.1	23
12	Solvent-Controlled Doublet Emission of an Organometallic Gold(I) Complex with a Polychlorinated Diphenyl(4-pyridyl)methyl Radical Ligand: Dual Fluorescence and Enhanced Emission Efficiency. Inorganic Chemistry, 2017, 56, 3909-3915.	4.0	20
13	Regulation of the Rate of Dinucleation of a Monocopper(I) Complex Containing Bipyrimidine Rotary Units by Restricted Double Pyrimidine Rotation. Inorganic Chemistry, 2014, 53, 2831-2840.	4.0	14
14	Expansion of Photostable Luminescent Radicals by <i>Metaâ€</i> Substitution. Chemistry - an Asian Journal, 2021, 16, 2538-2544.	3.3	13
15	First demonstration of the use of open-shell derivatives as organic luminophores for transparent luminescent solar concentrators. Materials Advances, 2021, 2, 7369-7378.	5.4	12
16	Molecular crystalline capsules that release their contents by light. Chemical Science, 2021, 12, 11585-11592.	7.4	11
17	Amplification of luminescence of stable radicals by coordination to NHC–gold(<scp>i</scp>) complex. Chemical Communications, 2022, 58, 2560-2563.	4.1	10
18	Spin-Reconstructed Proton-Coupled Electron Transfer in a Ferrocene–Nickeladithiolene Hybrid. Journal of the American Chemical Society, 2015, 137, 6448-6451.	13.7	9

Yohei Hattori

#	Article	IF	CITATION
19	Aggregation-induced emission effect on turn-off fluorescent switching of a photochromic diarylethene. Beilstein Journal of Organic Chemistry, 2019, 15, 2204-2212.	2.2	7
20	Steric Interference on the Redox-conjugated Pyrimidine Ring Rotation of Mono- and Dinuclear Copper Complexes with (4-Methyl-2-pyrimidinyl)imine Ligands. Chemistry Letters, 2014, 43, 1037-1039.	1.3	3
21	Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry - A European Journal, 2020, 26, 11441-11450.	3.3	3
22	Photoinduced topographical surface changes and photoresponse of the crystals of 7-methoxycoumarin. CrystEngComm, 2021, 23, 5780-5787.	2.6	3
23	Synthesis, characterization, and physical properties of oligo(1-(N,N-dimethylamino)pyrrole)s and their doped forms, precursors of candidates for molecular flat-band ferromagnets. Journal of Materials Chemistry C, 2015, 3, 4316-4320.	5.5	2
24	Autopolymerization of 2-bromo-3-methoxythiophene, analysis of reaction products and estimation of polymer structure. Polymer Journal, 2021, 53, 429-438.	2.7	1
25	Frontispiece: Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry - A European Journal, 2020, 26, .	3.3	0
26	Spontaneous Combustion of 2-Bromo-3-Methoxythiophene: A Study on Reaction Pathways and Energetics by Quantum Chemical Calculations. Journal of Physical Chemistry A, 2021, 125, 5615-5625.	2.5	0