
Jaume Gasia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050704/publications.pdf Version: 2024-02-01

LALIME CASIA

#	Article	IF	CITATIONS
1	Life cycle assessment and life cycle costing of an innovative component for refrigeration units. Journal of Cleaner Production, 2021, 295, 126442.	9.3	16
2	Numerical study of dynamic melting enhancement in a latent heat thermal energy storage system. Journal of Energy Storage, 2020, 31, 101664.	8.1	23
3	Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies, 2020, 13, 1425.	3.1	20
4	Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Conversion and Management, 2019, 184, 530-538.	9.2	66
5	Evaluation of energy density as performance indicator for thermal energy storage at material and system levels. Applied Energy, 2019, 235, 954-962.	10.1	40
6	Influence of the storage period between charge and discharge in a latent heat thermal energy storage system working under partial load operating conditions. Applied Energy, 2019, 235, 1389-1399.	10.1	25
7	Use of partial load operating conditions for latent thermal energy storage management. Applied Energy, 2018, 216, 234-242.	10.1	29
8	Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renewable Energy, 2018, 121, 236-248.	8.9	50
9	Process integration of thermal energy storage systems – Evaluation methodology and case studies. Applied Energy, 2018, 230, 750-760.	10.1	47
10	Numerical analysis of a latent heat thermal energy storage system under partial load operating conditions. Renewable Energy, 2018, 128, 350-361.	8.9	25
11	Static Concept at University of Lleida. , 2018, , 131-156.		0
12	Influence of the heat transfer fluid in a CSP plant molten salts charging process. Renewable Energy, 2017, 113, 148-158.	8.9	36
13	Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. Renewable and Sustainable Energy Reviews, 2017, 75, 1320-1338.	16.4	107
14	Numerical simulation of a finned-tube LHTES system: influence of the mushy zone constant on the phase change behaviour. Energy Procedia, 2017, 126, 517-524.	1.8	45
15	Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems. Renewable Energy, 2017, 114, 934-944.	8.9	53
16	Experimental investigation of the effect of dynamic melting in a cylindrical shell-and-tube heat exchanger using water as PCM. Applied Energy, 2017, 185, 136-145.	10.1	59
17	Phase Change Material Selection for Thermal Processes Working under Partial Load Operating Conditions in the Temperature Range between 120 and 200 °C. Applied Sciences (Switzerland), 2017, 7, 722.	2.5	39
18	Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger. Applied Sciences (Switzerland), 2016, 6, 112	2.5	43

JAUME GASIA

#	Article	IF	CITATIONS
19	Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 2016, 179, 284-301.	10.1	419
20	Design and Start-Up of Two Pilot Plants for Molten Salts Storage Testing. , 2016, , .		2
21	IEA SHC Task 42 / ECES Annex 29 – A Simple Tool for the Economic Evaluation of Thermal Energy Storages. Energy Procedia, 2016, 91, 197-206.	1.8	15
22	Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup. Applied Energy, 2016, 178, 394-403.	10.1	22
23	Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques. Renewable and Sustainable Energy Reviews, 2016, 60, 1584-1601.	16.4	59
24	Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renewable Energy, 2015, 83, 729-736.	8.9	154
25	Thermal performance evaluation of bischofite at pilot plant scale. Applied Energy, 2015, 155, 826-833.	10.1	14