Alexandros Flamos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability, 2016, 8, 1212.	1.6	599
2	How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production, 2018, 191, 207-219.	4.6	361
3	Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renewable and Sustainable Energy Reviews, 2021, 135, 110253.	8.2	275
4	A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Conversion and Management, 2020, 205, 112339.	4.4	89
5	Promoting sustainable energy technology transfers to developing countries through the CDM. Applied Energy, 2009, 86, 230-236.	5.1	82
6	Barriers to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal Transitions, 2020, 35, 383-399.	2.5	63
7	Model-based policymaking or policy-based modelling? How energy models and energy policy interact. Energy Research and Social Science, 2021, 75, 101984.	3.0	54
8	An agent-based model to simulate technology adoption quantifying behavioural uncertainty of consumers. Applied Energy, 2019, 255, 113795.	5.1	49
9	Is blending of energy and climate policy instruments always desirable?. Energy Policy, 2010, 38, 4186-4195.	4.2	48
10	Electric power transmission: An overview of associated burdens. International Journal of Energy Research, 2011, 35, 979-988.	2.2	42
11	Multi riteria analysis weighting methodology to incorporate stakeholders' preferences in energy and climate policy interactions. International Journal of Energy Sector Management, 2010, 4, 434-461.	1.2	40
12	A paper trail of evaluation approaches to energy and climate policy interactions. Renewable and Sustainable Energy Reviews, 2014, 40, 1090-1107.	8.2	40
13	Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs. Sustainability, 2018, 10, 2206.	1.6	40
14	Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models. Energy, 2022, 239, 121909.	4.5	32
15	Using Biomass to Achieve European Union Energy Targets—A Review of Biomass Status, Potential, and Supporting Policies. International Journal of Green Energy, 2011, 8, 411-428.	2.1	31
16	Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector. Energy Policy, 2020, 140, 111413.	4.2	31
17	Measurement of EU27 oil vulnerability. International Journal of Energy Sector Management, 2009, 3, 203-218.	1.2	30
18	Identifying Research Priorities for the further development andÂdeployment of Solar Photovoltaics. International Journal of Sustainable Energy, 2019, 38, 276-296.	1.3	29

ALEXANDROS FLAMOS

#	Article	IF	CITATIONS
19	A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways. Energy Policy, 2020, 139, 111350.	4.2	29
20	The clean development mechanism—catalyst for wide spread deployment of renewable energy technologies? or misnomer?. Environment, Development and Sustainability, 2010, 12, 89-102.	2.7	26
21	Linking least-cost energy system costs models with MCA: An assessment of the EU renewable energy targets and supporting policies. Energy Policy, 2011, 39, 2786-2799.	4.2	26
22	Preferences Matter: A Constructive Approach to Incorporating Local Stakeholders' Preferences in the Sustainability Evaluation of Energy Technologies. Sustainability, 2015, 7, 10922-10960.	1.6	26
23	Evaluating public policy instruments in the Greek building sector. Energy Policy, 2016, 88, 528-543.	4.2	26
24	The impact of clean development mechanism in achieving sustainable development. International Journal of Environment and Pollution, 2004, 21, 1.	0.2	21
25	Climate mitigation in the Mediterranean Europe: An assessment of regional and city-level plans. Journal of Environmental Management, 2021, 295, 113146.	3.8	21
26	What Do Capacity Deployment Rates Tell Us about the Efficiency of Electricity Generation from Renewable Energy Sources Support Measures in Greece?. Energies, 2016, 9, 38.	1.6	19
27	EU and Asian countries policies and programmes for the diffusion of sustainable energy technologies. Asia Europe Journal, 2008, 6, 261-276.	0.7	18
28	Bioenergy Options in the Industrialized and Developing World and Opportunities for the Clean Development Mechanism. International Journal of Green Energy, 2010, 7, 647-661.	2.1	18
29	Developing an integrated sustainability and resilience framework of indicators for the assessment of low-carbon energy technologies at the local level. International Journal of Sustainable Energy, 2017, 36, 945-971.	1.3	18
30	Web tool for the quantification of oil and gas corridors' socioâ€economic risks. International Journal of Energy Sector Management, 2010, 4, 213-235.	1.2	17
31	A "New-Deal―for the Development of Photovoltaic Investments in Greece? A Parametric Techno-Economic Assessment. Energies, 2017, 10, 1173.	1.6	16
32	The Efforts towards and Challenges of Greece's Post-Lignite Era: The Case of Megalopolis. Sustainability, 2020, 12, 10575.	1.6	16
33	Driving forces for renewable development in GCC countries. Energy Sources, Part B: Economics, Planning and Policy, 2016, 11, 244-250.	1.8	14
34	The challenge of an EU-GCC clean energy network. International Journal of Global Energy Issues, 2010, 33, 176.	0.2	13
35	Assessing low-carbon energy technologies against sustainability and resilience criteria: results of a European experts survey. International Journal of Sustainable Energy, 2017, 36, 502-516.	1.3	13
36	Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes. Renewable and Sustainable Energy Reviews, 2022, 158, 112162.	8.2	13

ALEXANDROS FLAMOS

#	Article	IF	CITATIONS
37	Risks and mitigation strategies in energy efficiency financing: A systematic literature review. Energy Reports, 2022, 8, 1789-1802.	2.5	13
38	Assessment of RES cooperation framework between the EU and North Africa. International Journal of Energy Sector Management, 2016, 10, 402-426.	1.2	12
39	Existing tools, user needs and required model adjustments for energy demand modelling of a carbon-neutral Europe. Energy Research and Social Science, 2022, 90, 102662.	3.0	12
40	Technology transfer insights for new climate regime. Environment, Development and Sustainability, 2010, 12, 19-33.	2.7	11
41	Graph theoryâ€based approach for energy corridors network to Greece. International Journal of Energy Sector Management, 2011, 5, 60-80.	1.2	11
42	EUâ€GCC cooperation for natural gas: prospects and challenges. International Journal of Energy Sector Management, 2013, 7, 194-222.	1.2	11
43	A Sectoral Micro-Economic Approach to Scenario Selection and Development: The Case of the Greek Power Sector. Energies, 2016, 9, 77.	1.6	11
44	Policy oriented review for photovoltaics introduction in the EU. International Journal of Renewable Energy Technology, 2009, 1, 64.	0.2	10
45	An ex-post assessment of the regulation on the energy performance of buildings in Greece and the Netherlands—a cross-country comparison. Energy Efficiency, 2016, 9, 261-279.	1.3	10
46	Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece. Energy Policy, 2022, 161, 112759.	4.2	9
47	Establishment of a European energy policy think-tank: necessity or luxury?. International Journal of Global Energy Issues, 2010, 33, 221.	0.2	8
48	White certificates and domestic offset schemes: possible synergies. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 187-205.	1.0	8
49	Investigating the market effects of increased RES penetration with BSAM: A wholesale electricity market simulator. Energy Reports, 2021, 7, 4905-4929.	2.5	8
50	Energy policy indicators for the assessment of the Euro-Mediterranean energy cooperation. International Journal of Energy Technology and Policy, 2004, 2, 301.	0.1	7
51	CDM-PAT: a decision support tool for the pre-assessment of CDM projects. International Journal of Computer Applications in Technology, 2005, 22, 80.	0.3	7
52	Mapping and Measuring European Local Governments' Priorities for a Sustainable and Low-Carbon Energy Future. Energies, 2015, 8, 11641-11666.	1.6	7
53	Managing Climate Policy Information Facilitating Knowledge Transfer to Policy Makers. Energies, 2016, 9, 454.	1.6	7
54	Identification of climate policy knowledge needs: a stakeholders consultation approach. International Journal of Climate Change Strategies and Management, 2018, 10, 772-795.	1.5	7

ALEXANDROS FLAMOS

#	Article	IF	CITATIONS
55	A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?. Energies, 2020, 13, 4768.	1.6	7
56	Data validation platform for the sophisticated monitoring and communication of the energy technology sector. Renewable Energy, 2010, 35, 931-935.	4.3	6
57	How Can the Context Affect Policy Decision-Making: The Case of Climate Change Mitigation Policies in the Greek Building Sector. Energies, 2016, 9, 294.	1.6	6
58	CMIEM: the computerised model for intelligent energy management. International Journal of Computer Applications in Technology, 2005, 22, 120.	0.3	5
59	e-Serem – A Web-Based Manual For The Estimation of Emission Reductions From JI and CDM Projects. Mitigation and Adaptation Strategies for Global Change, 2004, 9, 103-120.	1.0	4
60	Exploitation of renewable energy sources in the Gulf region: fairy tale or challenging opportunity?. International Journal of Arab Culture, Management and Sustainable Development, 2009, 1, 144.	0.1	4
61	KM in SMEs: a research agenda. International Journal of Management and Decision Making, 2009, 10, 91.	0.1	4
62	Domestic offset projects in the built environment. Energy Efficiency, 2012, 5, 335-350.	1.3	4
63	Expanding RES cooperation with West Balkans: from importing electricity to exporting RES. International Journal of Energy Sector Management, 2016, 10, 363-380.	1.2	4
64	An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market. Energies, 2020, 13, 4575.	1.6	4
65	An Application of Calibration and Uncertainty Quantification Techniques for Agent-Based Models. , 2019, , 79-95.		4
66	Integrating Environmental, Sociopolitical, Economic, and Technological Dimensions for the Assessment of Climate Policy Instruments. Climate Change Management, 2011, , 623-648.	0.6	4
67	Application of the Multiple Benchmark System (MBS) to selected case study projects. Climate Policy, 2004, 4, 45-63.	2.6	3
68	The Multiple Benchmark System Application to Indonesia, Russia and Panama. Mitigation and Adaptation Strategies for Global Change, 2004, 9, 147-180.	1.0	3
69	The practice of climate change policy evaluations in the European Union and its member states: results from a meta-analysis. Sustainable Earth, 2019, 2, .	1.3	3
70	A City Capability Assessment Framework Focusing on Planning, Financing, and Implementing Sustainable Energy Projects. Sustainability, 2020, 12, 8447.	1.6	3
71	Developing an Energy Risk Assessment System. , 2010, , 337-355.		3
72	Benchmark selection impact and uncertainty in emission reductions for selected case study projects. International Journal of Global Environmental Issues, 2003, 3, 436.	0.1	1

#	Article	IF	CITATIONS
73	Policy dialogue on the assessment and convergence of renewable energy policy in EU member states. Energy and Environment, 2016, 27, 5-9.	2.7	1
74	Web Tool for the Quantification of Oil & Gas Corridors' Socioeconomic Risks: The Case of Greece. International Journal of Energy Sector Management, 2010, 4, .	1.2	0
75	Setting Technology Transfer Priorities with CDM-SET. , 2010, , 205-222.		0
76	Application of the Multiple Benchmark System (MBS) to selected case study projects. Climate Policy, 2004, 4, 45-63.	2.6	0