List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2050155/publications.pdf Version: 2024-02-01

Ιναν Ραγμέντ

#	Article	IF	CITATIONS
1	X-ray Structures of the Myosin Motor Domain of Dictyostelium discoideum Complexed with MgADP.cntdot.BeFx and MgADP.cntdot.AlF4 Biochemistry, 1995, 34, 8960-8972.	2.5	675
2	Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genetics, 1996, 13, 63-69.	21.4	559
3	X-ray Structure of the Magnesium(II)·ADP·Vanadate Complex of the <i>Dictyostelium discoideum</i> Myosin Motor Domain to 1.9 à Resolution [,] . Biochemistry, 1996, 35, 5404-5417.	2.5	537
4	Structure of southern bean mosaic virus at 2.8 Ã resolution. Nature, 1980, 286, 33-39.	27.8	437
5	Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. Journal of Biological Chemistry, 2003, 278, 43885-43888.	3.4	417
6	Three-Dimensional Structure of the Tn5 Synaptic Complex Transposition Intermediate. Science, 2000, 289, 77-85.	12.6	410
7	Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal, 2008, 413, 369-387.	3.7	365
8	The Enolase Superfamily: A General Strategy for Enzyme-Catalyzed Abstraction of the α-Protons of Carboxylic Acidsâ€. Biochemistry, 1996, 35, 16489-16501.	2.5	331
9	Structure of Carbamoyl Phosphate Synthetase:  A Journey of 96 à from Substrate to Product [,] . Biochemistry, 1997, 36, 6305-6316.	2.5	322
10	Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature, 1993, 364, 171-174.	27.8	311
11	Molecular structure of an apolipoprotein determined at 2.5ANG. resolution. Biochemistry, 1991, 30, 603-608.	2.5	266
12	The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural and Molecular Biology, 2005, 12, 378-379.	8.2	265
13	Conservation within the myosin motor domain: implications for structure and function. Structure, 1996, 4, 969-987.	3.3	224
14	Structure of Rabbit Muscle Pyruvate Kinase Complexed with Mn2+, K+, and Pyruvate. Biochemistry, 1994, 33, 6301-6309.	2.5	222
15	Crystallization and structure determination of 2.5ANG. resolution of the oxidized iron-sulfur [2Fe-2S] ferredoxin isolated from Anabaena 7120. Biochemistry, 1991, 30, 4126-4131.	2.5	197
16	Three-Dimensional Structure of the Biotin Carboxylase Subunit of Acetyl-CoA Carboxylase. Biochemistry, 1994, 33, 10249-10256.	2.5	197
17	X-ray Structures of the MgADP, MgATPγS, and MgAMPPNP Complexes of theDictyostelium discoideumMyosin Motor Domainâ€,‡. Biochemistry, 1997, 36, 11619-11628.	2.5	194
18	Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Archives of Biochemistry and Biophysics, 2005, 433, 59-70.	3.0	194

#	Article	IF	CITATIONS
19	Three-Dimensional Structure ofEscherichia coliAsparagine Synthetase B:Â A Short Journey from Substrate to Productâ€,‡. Biochemistry, 1999, 38, 16146-16157.	2.5	191
20	Actin-targeting natural products: structures, properties and mechanisms of action. Cellular and Molecular Life Sciences, 2006, 63, 2119-2134.	5.4	188
21	A Carboxylate Oxygen of the Substrate Bridges the Magnesium Ions at the Active Site of Enolase:Â Structure of the Yeast Enzyme Complexed with the Equilibrium Mixture of 2-Phosphoglycerate and Phosphoenolpyruvate at 1.8 à Resolutionâ€,‡. Biochemistry, 1996, 35, 4349-4358.	2.5	150
22	X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 Ã resolution. Journal of Molecular Biology, 1992, 227, 840-851.	4.2	149
23	Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nature Structural and Molecular Biology, 2003, 10, 1058-1063.	8.2	147
24	Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: An x-ray analysis at 1.8ANG. resolution. Biochemistry, 1993, 32, 9851-9858.	2.5	132
25	Structure of the Bis(Mg2+)â^'ATPâ^'Oxalate Complex of the Rabbit Muscle Pyruvate Kinase at 2.1 Ã Resolution: ATP Binding over a Barrelâ€,‡. Biochemistry, 1998, 37, 6247-6255.	2.5	128
26	The 1.5-Ã Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions. Journal of Biological Chemistry, 1996, 271, 21956-21968.	3.4	122
27	X-ray Structures of the Apo and MgATP-bound States ofDictyostelium discoideum Myosin Motor Domain. Journal of Biological Chemistry, 2000, 275, 38494-38499.	3.4	122
28	Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from Escherichia coli. Plasmid, 2008, 59, 231-237.	1.4	122
29	Domain Architecture of Pyruvate Carboxylase, a Biotin-Dependent Multifunctional Enzyme. Science, 2007, 317, 1076-1079.	12.6	119
30	Inside polyomavirus at 25-Ã resolution. Nature, 1992, 355, 652-654.	27.8	118
31	The Structural Basis of the Myosin ATPase Activity. Journal of Biological Chemistry, 1996, 271, 15850-15853.	3.4	117
32	[12] Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods in Enzymology, 1997, 276, 171-179.	1.0	114
33	Chelation of Serine 39 to Mg2+ Latches a Gate at the Active Site of Enolase: Structure of the Bis(Mg2+) Complex of Yeast Enolase and the Intermediate Analog Phosphonoacetohydroxamate at 2.1ANG. Resolution. Biochemistry, 1994, 33, 9333-9342.	2.5	110
34	The molecular structure of UDP-galactose 4-epimerase fromEscherichia coli determined at 2.5 Ã resolution. Proteins: Structure, Function and Bioinformatics, 1992, 12, 372-381.	2.6	109
35	Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 .ANG. resolution. Biochemistry, 1995, 34, 6581-6586.	2.5	109
36	Three-dimensional structure of the high-potential iron-sulfur protein isolated from the purple phototrophic bacterium Rhodocyclus tenuis determined and refined at 1.5 Ã resolution. Journal of Molecular Biology, 1992, 228, 672-686.	4.2	104

#	Article	IF	CITATIONS
37	Molecular structure of kanamycin nucleotidyltransferase determined to 3.0ANG. resolution. Biochemistry, 1993, 32, 11977-11984.	2.5	100
38	X-ray Structure of the Magnesium(II)-Pyrophosphate Complex of the Truncated Head of Dictyostelium discoideum Myosin to 2.7 .ANG. Resolution. Biochemistry, 1995, 34, 8973-8981.	2.5	99
39	Molecular structure of the oxidized, recombinant, heterocyst [2Fe-2S] (iron-sulfur) ferredoxin from Anabaena 7120 determined to 1.7ANG. resolution. Biochemistry, 1993, 32, 6788-6793.	2.5	97
40	X-ray Crystal Structure of the Yeast Kar3 Motor Domain Complexed with Mg·ADP to 2.3 à Resolution,. Biochemistry, 1998, 37, 1769-1776.	2.5	97
41	Molecular structure of cytochrome c2 isolated from Rhodobacter capsulatus determined at 2·5 Ã resolution. Journal of Molecular Biology, 1991, 220, 673-685.	4.2	95
42	The three-dimensional structure of a molecular motor. Trends in Biochemical Sciences, 1994, 19, 129-134.	7.5	94
43	Three-Dimensional Structure of Galactose-1-phosphate Uridylyltransferase from Escherichia coli at 1.8 .ANG. Resolution. Biochemistry, 1995, 34, 11049-11061.	2.5	94
44	Structures of microfilament destabilizing toxins bound to actin provide insight into toxin design and activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14527-14532.	7.1	91
45	Biomolecular mimicry in the actin cytoskeleton: Mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13851-13856.	7.1	89
46	Project management system for structural and functional proteomics: Sesame. Journal of Structural and Functional Genomics, 2003, 4, 11-23.	1.2	88
47	Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum. Journal of Biological Chemistry, 2008, 283, 1660-1669.	3.4	86
48	The Structure of Nucleotidylated Histidine-166 of Galactose-1-phosphate Uridylyltransferase Provides Insight into Phosphoryl Group Transferâ€,‡. Biochemistry, 1996, 35, 11560-11569.	2.5	85
49	Structural and mechanistic studies of enolase. Current Opinion in Structural Biology, 1996, 6, 736-743.	5.7	83
50	Ligand-Induced Domain Movement in Pyruvate Kinase: Structure of the Enzyme from Rabbit Muscle with Mg2+, K+, andl-Phospholactate at 2.7 Ã Resolution. Archives of Biochemistry and Biophysics, 1997, 345, 199-206.	3.0	82
51	Structure/function insights into Tn5 transposition. Current Opinion in Structural Biology, 2004, 14, 50-57.	5.7	80
52	Vik1 Modulates Microtubule-Kar3 Interactions through a Motor Domain that Lacks an Active Site. Cell, 2007, 128, 1161-1172.	28.9	80
53	The Structural Determination of an Insect Sterol Carrier Protein-2 with a Ligand-bound C16 Fatty Acid at 1.35-Ã Resolution. Journal of Biological Chemistry, 2003, 278, 39085-39091.	3.4	76
54	Two-metal active site binding of a Tn5 transposase synaptic complex. Nature Structural Biology, 2002, 9, 278-281.	9.7	75

Ινάν Καύμεντ

#	Article	IF	CITATIONS
55	Packing analysis of crystalline myosin subfragment-1. Journal of Molecular Biology, 1985, 181, 487-501.	4.2	73
56	The structure of carbamoyl phosphate synthetase determined to 2.1â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 8-24.	2.5	73
57	Evolution of Enzymatic Activity in the Enolase Superfamily:Â Functional Studies of the Promiscuouso-Succinylbenzoate Synthase fromAmycolatopsisâ€. Biochemistry, 2004, 43, 224-229.	2.5	73
58	Structural Basis of Swinholide A Binding to Actin. Chemistry and Biology, 2005, 12, 287-291.	6.0	73
59	Molecular Structure of the Oxidized High-Potential Iron-Sulfur Protein Isolated from Ectothiorhodospira vacuolata. Biochemistry, 1994, 33, 2476-2483.	2.5	72
60	The Three-dimensional Structure of a Tn5Transposase-related Protein Determined to 2.9-Ã Resolution. Journal of Biological Chemistry, 1999, 274, 11904-11913.	3.4	72
61	Three-Dimensional Structure of ATP:Corrinoid Adenosyltransferase fromSalmonella typhimuriumin Its Free State, Complexed with MgATP, or Complexed with Hydroxycobalamin and MgATPâ€,‡. Biochemistry, 2001, 40, 361-374.	2.5	72
62	A Structural Basis for Regulation of Actin Polymerization by Pectenotoxins. Journal of Molecular Biology, 2007, 371, 959-970.	4.2	72
63	Evolution of Enzymatic Activity in the Enolase Superfamily:  Structure of o-Succinylbenzoate Synthase from Escherichia coli in Complex with Mg2+ and o-Succinylbenzoate,. Biochemistry, 2000, 39, 10662-10676.	2.5	71
64	Structure of bacterial luciferase. Current Opinion in Structural Biology, 1995, 5, 798-809.	5.7	68
65	Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition,. Biochemistry, 2010, 49, 4908-4920.	2.5	67
66	Homologous (β/α)8-Barrel Enzymes That Catalyze Unrelated Reactions: Orotidine 5â€~-Monophosphate Decarboxylase and 3-Keto-l-Gulonate 6-Phosphate Decarboxylaseâ€,‡. Biochemistry, 2002, 41, 3861-3869.	2.5	65
67	Structural Analysis of the H166G Site-Directed Mutant of Galactose-1-phosphate Uridylyltransferase Complexed with either UDP-glucose or UDP-galactose:  Detailed Description of the Nucleotide Sugar Binding Site,. Biochemistry, 1997, 36, 1212-1222.	2.5	63
68	Structural Characterization of the Active Site of the PduO-Type ATP:Co(I)rrinoid Adenosyltransferase from Lactobacillus reuteri. Journal of Biological Chemistry, 2007, 282, 2596-2605.	3.4	63
69	Two-dimensional magnetization exchange spectroscopy of Anabaena 7120 ferredoxin. Nuclear Overhauser effect and electron self-exchange cross peaks from amino acid residues surrounding the iron-sulfur (2Fe-2S) cluster. Biochemistry, 1991, 30, 7363-7368.	2.5	60
70	The structure of thiodithiazyl chlorodisulphate, S3N2S2O6Cl and its preparation from thiodithiazyl monochloride, S3N2Cl. Inorganic and Nuclear Chemistry Letters, 1974, 10, 647-654.	0.7	57
71	The structure of Southern bean mosaic virus at 22.5 Ã resolution. Virology, 1976, 75, 394-400.	2.4	57
72	Tn5: A Molecular Window on Transposition. Biochemical and Biophysical Research Communications, 1999, 266, 729-734.	2.1	56

#	Article	IF	CITATIONS
73	Small-Scale Batch Crystallization of Proteins Revisited. Structure, 2002, 10, 147-151.	3.3	55
74	Structural Characterization of a Human-Type Corrinoid Adenosyltransferase Confirms That Coenzyme B ₁₂ Is Synthesized through a Four-Coordinate Intermediate. Biochemistry, 2008, 47, 5755-5766.	2.5	55
75	Octahedral coordination at the high-affinity metal site in enolase: Crystallographic analysis of the Mgll-enzyme complex from yeast at 1.9 .ANG. resolution. Biochemistry, 1995, 34, 4325-4330.	2.5	54
76	Structural and Functional Analysis of Tetracenomycin F2 Cyclase from Streptomyces glaucescens. Journal of Biological Chemistry, 2004, 279, 37956-37963.	3.4	54
77	Three-Dimensional Structure of the Muscle Fatty-Acid-Binding Protein Isolated from the Desert Locust Schistocerca gregaria. Biochemistry, 1994, 33, 12378-12385.	2.5	53
78	Structural studies on myosin II: Communication between distant protein domains. BioEssays, 1997, 19, 561-569.	2.5	51
79	X-ray crystal structure and solution fluorescence characterization of MgA·2′(3′)-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. Journal of Molecular Biology, 1997, 274, 394-407.	4.2	50
80	Molecular Dynamics Analysis of Structural Factors Influencing Back Door Pi Release in Myosin. Biophysical Journal, 2004, 86, 3794-3803.	0.5	50
81	Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3806-15.	7.1	50
82	Absolute Stereochemistry of Ulapualide A. Organic Letters, 2004, 6, 597-599.	4.6	49
83	Evolution of Enzymatic Activity in the Enolase Superfamily:  Structural Studies of the Promiscuous o-Succinylbenzoate Synthase from Amycolatopsis,. Biochemistry, 2004, 43, 5716-5727.	2.5	49
84	Crystal Structure of Os79 (Os04g0206600) from <i>Oryza sativa</i> : A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry, 2016, 55, 6175-6186.	2.5	49
85	Three-Dimensional Structure of Adenosylcobinamide Kinase/Adenosylcobinamide Phosphate Guanylyltransferase fromSalmonella typhimuriumDetermined to 2.3 à Resolutionâ€,‡. Biochemistry, 1998, 37, 7686-7695.	2.5	46
86	Channel gate! Tension, leak and disclosure. Structure, 1999, 7, R99-R103.	3.3	45
87	X-ray Structures of the Dictyostelium discoideumMyosin Motor Domain with Six Non-nucleotide Analogs. Journal of Biological Chemistry, 2000, 275, 398-408.	3.4	44
88	Evolution of Enzymatic Activities in the Enolase Superfamily:Â Crystallographic and Mutagenesis Studies of the Reaction Catalyzed byd-Glucarate Dehydratase fromEscherichia coliâ€,‡. Biochemistry, 2000, 39, 4590-4602.	2.5	44
89	Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12867-12872.	7.1	44
90	The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Molecular Biology of the Cell, 2017, 28, 3298-3314.	2.1	44

#	Article	IF	CITATIONS
91	Crystal Structure of Polymerization-Competent Actin. Journal of Molecular Biology, 2006, 362, 140-150.	4.2	43
92	The Three-Dimensional Structures of Nicotinate Mononucleotide:5,6-Dimethylbenzimidazole Phosphoribosyltransferase (CobT) fromSalmonella typhimuriumComplexed with 5,6-Dimethybenzimidazole and Its Reaction Products Determined to 1.9 à Resolutionâ€,‡. Biochemistry, 1999, 38, 16125-16135.	2.5	42
93	Evolution of Enzymatic Activities in the Orotidine 5â€~-Monophosphate Decarboxylase Suprafamily: Enhancing the Promiscuous d-arabino-Hex-3-ulose 6-Phosphate Synthase Reaction Catalyzed by 3-Keto-l-gulonate 6-Phosphate Decarboxylase. Biochemistry, 2005, 44, 1807-1815.	2.5	42
94	Kinetic characterization of reductively methylated myosin subfragment 1. Biochemistry, 1993, 32, 9859-9865.	2.5	41
95	Understanding the Importance of Protein Structure to Nature's Routes for Divergent Evolution in TIM Barrel Enzymes. Accounts of Chemical Research, 2004, 37, 149-158.	15.6	40
96	Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-Î ² -D-glucoside. Toxins, 2015, 7, 2685-2700.	3.4	40
97	Evolution of Enzymatic Activities in the Enolase Superfamily:  Crystal Structures of the l-Ala-d/l-Glu Epimerases from Escherichia coli and Bacillus subtilis,. Biochemistry, 2001, 40, 15716-15724.	2.5	39
98	Bioprospecting for Trichothecene 3- <i>O</i> -Acetyltransferases in the Fungal Genus <i>Fusarium</i> Yields Functional Enzymes with Different Abilities To Modify the Mycotoxin Deoxynivalenol. Applied and Environmental Microbiology, 2011, 77, 1162-1170.	3.1	39
99	Structural Investigation of the Biosynthesis of Alternative Lower Ligands for Cobamides by Nicotinate Mononucleotide: 5,6-Dimethylbenzimidazole Phosphoribosyltransferase from Salmonella enterica. Journal of Biological Chemistry, 2001, 276, 37612-37620.	3.4	38
100	Cryo-electron tomography of microtubule–kinesin motor complexes. Journal of Structural Biology, 2010, 170, 257-265.	2.8	38
101	The small molecule tool (S)-(â^')-blebbistatin: novel insights of relevance to myosin inhibitor design. Organic and Biomolecular Chemistry, 2008, 6, 2076.	2.8	37
102	Kinesin and myosin: molecular motors with similar engines. Structure, 1996, 4, 501-504.	3.3	36
103	The structure of southern bean mosaic virus at 5 Ã resolution. Virology, 1978, 85, 187-197.	2.4	35
104	Evolution of Enzymatic Activities in the Enolase Superfamily:Â Crystal Structure of (D)-Glucarate Dehydratase fromPseudomonasputidaâ€,‡. Biochemistry, 1998, 37, 14358-14368.	2.5	35
105	Evolution of Enzymatic Activities in the Enolase Superfamily:Â Structure of a Substrate-Liganded Complex of thel-Ala-d/l-Glu Epimerase fromBacillus subtilisâ€,‡. Biochemistry, 2004, 43, 10370-10378.	2.5	35
106	Structural and functional characterization of TRI3 trichothecene 15â€ <i>O</i> â€acetyltransferase from <i>Fusarium sporotrichioides</i> . Protein Science, 2009, 18, 747-761.	7.6	34
107	X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv. Protein Science, 2009, 14, 1508-1517.	7.6	34
108	Residue Phe112 of the Human-Type Corrinoid Adenosyltransferase (PduO) Enzyme of <i>Lactobacillus reuteri</i> Is Critical to the Formation of the Four-Coordinate Co(II) Corrinoid Substrate and to the Activity of the Enzyme,. Biochemistry, 2009, 48, 3138-3145.	2.5	34

#	Article	IF	CITATIONS
109	Three-Dimensional Structure of Adenosylcobinamide Kinase/Adenosylcobinamide Phosphate Guanylyltransferase (CobU) Complexed with GMP:Â Evidence for a Substrate-Induced Transferase Active Siteâ€,‡. Biochemistry, 1999, 38, 12995-13005.	2.5	33
110	Structural and Functional Analyses of the Human-Type Corrinoid Adenosyltransferase (PduO) from <i>Lactobacillus reuteri</i> [,] . Biochemistry, 2007, 46, 13829-13836.	2.5	33
111	Structure-Guided Expansion of the Substrate Range of Methylmalonyl Coenzyme A Synthetase (MatB) of Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2012, 78, 6619-6629.	3.1	33
112	Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules. Biophysical Journal, 2015, 109, 1472-1482.	0.5	32
113	Galactose-1-phosphate Uridylyltransferase from Escherichia coli, a Zinc and Iron Metalloenzyme. Biochemistry, 1995, 34, 5610-5617.	2.5	31
114	The ATP:Co(I)rrinoid Adenosyltransferase (CobA) Enzyme ofSalmonella enterica Requires the 2â€2-OH Group of ATP for Function and Yields Inorganic Triphosphate as Its Reaction Byproduct. Journal of Biological Chemistry, 2002, 277, 33127-33131.	3.4	31
115	Evolution of Enzymatic Activity in the Enolase Superfamily:Â Structural and Mutagenic Studies of the Mechanism of the Reaction Catalyzed byo-Succinylbenzoate Synthase fromEscherichia coliâ€,‡. Biochemistry, 2003, 42, 14427-14433.	2.5	31
116	Structural Organization of FtsB, a Transmembrane Protein of the Bacterial Divisome. Biochemistry, 2013, 52, 2574-2585.	2.5	31
117	Evolution of Enzymatic Activities in the Orotidine 5â€~-Monophosphate Decarboxylase Suprafamily: Structural Basis for Catalytic Promiscuity in Wild-Type and Designed Mutants of 3-Keto-I-gulonate 6-Phosphate Decarboxylase. Biochemistry, 2005, 44, 1816-1823.	2.5	30
118	Determinants and Expansion of Specificity in a Trichothecene UDP-Glucosyltransferase from <i>Oryza sativa</i> . Biochemistry, 2017, 56, 6585-6596.	2.5	30
119	Structure of the <i>β₂</i> homodimer of bacterial luciferase from <i>vibrio harveyi</i> : Xâ€ r ay analysis of a kinetic protein folding trap. Protein Science, 1997, 6, 13-23.	7.6	29
120	Structural Insights into the Mechanism of Four-Coordinate Cob(II)alamin Formation in the Active Site of the <i>Salmonella enterica</i> ATP:Co(I)rrinoid Adenosyltransferase Enzyme: Critical Role of Residues Phe91 and Trp93. Biochemistry, 2012, 51, 9647-9657.	2.5	29
121	Three-Dimensional Structure of the l-Threonine-O-3-phosphate Decarboxylase (CobD) Enzyme from Salmonella enterica,. Biochemistry, 2002, 41, 4798-4808.	2.5	28
122	Evolution of Enzymatic Activities in the Enolase Superfamily:Â Identification of the General Acid Catalyst in theActive Site ofd-Glucarate Dehydratase fromEscherichia coliâ€,‡. Biochemistry, 2001, 40, 10054-10062.	2.5	27
123	Kar3Vik1, a member of the Kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. Journal of Cell Biology, 2012, 197, 957-970.	5.2	27
124	Analysis of the Adenosylcobinamide Kinase/Adenosylcobinamide-phosphate Guanylyltransferase (CobU) Enzyme of Salmonella typhimurium LT2. Journal of Biological Chemistry, 2000, 275, 27576-27586.	3.4	26
125	Structural Studies of thel-Threonine-O-3-phosphate Decarboxylase (CobD) Enzyme fromSalmonella enterica: The Apo, Substrate, and Productâ^Aldimine Complexesâ€,‡. Biochemistry, 2002, 41, 9079-9089.	2.5	25
126	Pentaerythritol propoxylate: a new crystallization agent and cryoprotectant induces crystal growth of 2-methylcitrate dehydratase. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 306-309.	2.5	25

#	Article	IF	CITATIONS
127	Structure-Function Analysis of the C-terminal Domain of CNM67, a Core Component of the Saccharomyces cerevisiae Spindle Pole Body. Journal of Biological Chemistry, 2011, 286, 18240-18250.	3.4	25
128	Kinesin-2 motors: Kinetics and biophysics. Journal of Biological Chemistry, 2018, 293, 4510-4518.	3.4	25
129	Evolution of Enzymatic Activities in the Orotidine 5â€~-Monophosphate Decarboxylase Suprafamily:Â Mechanistic Evidence for a Proton Relay System in the Active Site of 3-Keto-l-gulonate 6-Phosphate Decarboxylaseâ€. Biochemistry, 2004, 43, 6427-6437.	2.5	24
130	Trimethyllead acetate: A first-choice heavy atom derivative for protein crystallography. Archives of Biochemistry and Biophysics, 1991, 291, 187-194.	3.0	22
131	Myosin subfragment-1: structure and function of a molecular motor. Current Opinion in Structural Biology, 1993, 3, 944-952.	5.7	22
132	The Three-dimensional Structure of the Core Domain of Naf Y from Azotobacter vinelandii determined at 1.8-Ã Resolution. Journal of Biological Chemistry, 2003, 278, 32150-32156.	3.4	22
133	Capture of a Labile Substrate by Expulsion of Water Molecules from the Active Site of Nicotinate Mononucleotide:5,6-Dimethylbenzimidazole Phosphoribosyltransferase (CobT) from Salmonella enterica. Journal of Biological Chemistry, 2002, 277, 41120-41127.	3.4	21
134	The three-dimensional crystal structure of the PrpF protein ofShewanella oneidensiscomplexed withtrans-aconitate: Insights into its biological function. Protein Science, 2007, 16, 1274-1284.	7.6	21
135	Evidence for "Unseen―Transposase–DNA Contacts. Journal of Molecular Biology, 2002, 322, 971-982.	4.2	20
136	Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Nucleic Acids Research, 2008, 36, 5855-5862.	14.5	20
137	The isolation, purification, and preliminary crystallographic characterization of udp-galactose-4-epimerase fromEscherichia coli. Proteins: Structure, Function and Bioinformatics, 1991, 9, 135-142.	2.6	19
138	Kinesin Kar3Cik1 ATPase Pathway for Microtubule Cross-linking. Journal of Biological Chemistry, 2011, 286, 29261-29272.	3.4	18
139	The ATPase Pathway That Drives the Kinesin-14 Kar3Vik1 Powerstroke. Journal of Biological Chemistry, 2012, 287, 36673-36682.	3.4	17
140	Family-specific Kinesin Structures Reveal Neck-linker Length Based on Initiation of the Coiled-coil. Journal of Biological Chemistry, 2016, 291, 20372-20386.	3.4	17
141	Reactions of tetrasulphur tetranitride with halides. Part VI. The preparation and structure of cyclopentathiazenium pentachloro(phosphoryl chloride)stannate(IV). Journal of the Chemical Society Dalton Transactions, 1976, , 928.	1.1	16
142	Crystal structure of 2,4,6,8,9,10-hexamethyl-2,4,6,8,9,10-hexabora-adamantane. Journal of the Chemical Society Dalton Transactions, 1977, , 136.	1.1	16
143	Structural Evidence for a 1,2-Enediolate Intermediate in the Reaction Catalyzed by 3-Keto-l-Gulonate 6-Phosphate Decarboxylase, a Member of the Orotidine 5â€~-Monophosphate Decarboxylase Suprafamilyâ€,‡. Biochemistry, 2003, 42, 12133-12142.	2.5	16
144	The Structural Determination of Phosphosulfolactate Synthase from Methanococcus jannaschii at 1.7-Ã Resolution. Journal of Biological Chemistry, 2003, 278, 45858-45863.	3.4	16

#	Article	IF	CITATIONS
145	Evolution of Enzymatic Activities in the Orotidine 5â€~-Monophosphate Decarboxylase Suprafamily:Â Crystallographic Evidence for a Proton Relay System in the Active Site of 3-Keto-l-gulonate 6-Phosphate Decarboxylaseâ€,‡. Biochemistry, 2004, 43, 6438-6446.	2.5	16
146	Functional asymmetry in kinesin and dynein dimers. Biology of the Cell, 2013, 105, 1-13.	2.0	16
147	Dissecting cobamide diversity through structural and functional analyses of the base-activating CobT enzyme of Salmonella enterica. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 464-475.	2.4	16
148	Crystallization and preliminary analysis of crystals of cytochrome c2 from Rhodopseudomonas capsulata. Journal of Molecular Biology, 1987, 195, 229-231.	4.2	15
149	Insights into the Importance of Hydrogen Bonding in the γ-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Serine 236,. Biochemistry, 2010, 49, 4897-4907.	2.5	15
150	Insights into the Specificity of Lysine Acetyltransferases. Journal of Biological Chemistry, 2014, 289, 36249-36262.	3.4	15
151	Kinesin-2 KIF3AB Exhibits Novel ATPase Characteristics. Journal of Biological Chemistry, 2014, 289, 27836-27848.	3.4	15
152	A composite approach towards a complete model of the myosin rod. Proteins: Structure, Function and Bioinformatics, 2016, 84, 172-189.	2.6	15
153	Structural Insights into the Function of the Nicotinate Mononucleotide:phenol/ <i>p</i> -cresol Phosphoribosyltransferase (ArsAB) Enzyme from <i>Sporomusa ovata</i> . Biochemistry, 2012, 51, 8571-8582.	2.5	14
154	Structure ofD-ribulose 5-phosphate 3-epimerase fromSynechocystisto 1.6â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1687-1690.	2.5	13
155	Fast or Slow, Either Head Can Start the Processive Run of Kinesin-2 KIF3AC. Journal of Biological Chemistry, 2016, 291, 4407-4416.	3.4	13
156	Homodimeric Kinesin-2 KIF3CC Promotes Microtubule Dynamics. Biophysical Journal, 2017, 113, 1845-1857.	0.5	13
157	[23] A systematic method for aligning double-focusing mirrors. Methods in Enzymology, 1985, 114, 316-329.	1.0	12
158	Structural Insights into the Substrate Specificity of the Rhodopseudomonas palustris Protein Acetyltransferase RpPat. Journal of Biological Chemistry, 2012, 287, 41392-41404.	3.4	12
159	A description of the techniques and application of molecular replacement used to determine the structure of polyoma virus capsid at 22.5 Ã resolution. Acta Crystallographica Section B: Structural Science, 1983, 39, 505-516.	1.8	11
160	The PrpF protein of Shewanella oneidensis MR-1 catalyzes the isomerization of 2-methyl-cis-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle. PLoS ONE, 2017, 12, e0188130.	2.5	10
161	Crystallization and preliminary analysis of enzyme-substrate complexes of pyruvate kinase from rabbit muscle. Proteins: Structure, Function and Bioinformatics, 1991, 11, 153-157.	2.6	9
162	Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run. Journal of Biological Chemistry, 2016, 291, 23248-23256.	3.4	9

#	Article	IF	CITATIONS
163	[101 Treatment and manipulation of crystals. Methods in Enzymology, 1985, 114, 136-140.	1.0	7
164	Kar3Vik1 Uses a Minus-End Directed Powerstroke for Movement along Microtubules. PLoS ONE, 2013, 8, e53792.	2.5	7
165	Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Molecular Biology of the Cell, 2019, 30, 1505-1522.	2.1	7
166	Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from <i>Methanocaldococcus jannaschii:</i> Insights into GTP Binding and Dimerization. Biochemistry, 2011, 50, 5301-5313.	2.5	6
167	Common mechanistic themes for the powerstroke of kinesin-14 motors. Journal of Structural Biology, 2013, 184, 335-344.	2.8	6
168	Crystalline cowpea chlorotic mottle virus. Journal of Ultrastructure Research, 1977, 61, 240-242.	1.1	5
169	Crystal structure of 2,2,4,4,6-pentafluoro-6-[N-(l,2,4,3,5-trithiadiazol-1-ylidene)amino]cyclotriphosphazene, S3N2NP3N3F5. Journal of the Chemical Society Dalton Transactions, 1982, , 883.	1.1	5
170	Crystallization and preliminary crystallographic analysis of a thermostable mutant of kanamycin nucleotidyltransferase. Archives of Biochemistry and Biophysics, 1992, 295, 1-4.	3.0	5
171	Three-Dimensional Structure ofEscherichia coliAsparagine Synthetase B:Â A Short Journey from Substrate to Product. Biochemistry, 2000, 39, 7330-7330.	2.5	5
172	Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod. Journal of Structural Biology, 2017, 200, 219-228.	2.8	5
173	Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum. Protein Expression and Purification, 2017, 138, 69-75.	1.3	5
174	Crystal structure of gene locus At3g16990 from Arabidopsis thaliana. Proteins: Structure, Function and Bioinformatics, 2004, 57, 221-222.	2.6	4
175	Structural and functional analysis of anlâ€serineOâ€phosphate decarboxylase involved in norcobamide biosynthesis. FEBS Letters, 2019, 593, 3040-3053.	2.8	4
176	Crystallization and preliminary analysis of telokin, the C-terminal domain of myosin light chain kinase. Journal of Molecular Biology, 1991, 217, 621-623.	4.2	3
177	Preliminary X-ray crystallographic analysis of biotin carboxylase isolated from Escherichia coli. Journal of Molecular Biology, 1994, 235, 367-369.	4.2	2
178	Molecular Biophysics for the Life Sciences. , 2013, , .		2
179	Structural insights into the assembly of a monomeric class V myosin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4351-4352.	7.1	2
180	Yeast pericentrin/Spc110 contains multiple domains required for tethering the Î ³ -tubulin complex to the centrosome. Molecular Biology of the Cell, 2020, 31, 1437-1452.	2.1	2

#	Article	IF	CITATIONS
181	Protein Structure. , 2003, , 191-218.		2
182	Chapter 20 Papovaviridae. Perspectives in Medical Virology, 1987, 3, 335-348.	0.1	0
183	Understanding the Importance of Protein Structure to Nature′s Routes for Divergent Evolution in TIM Barrell Enzymes. ChemInform, 2004, 35, no.	0.0	0
184	Diffraction and Scattering by X-Rays and Neutrons. , 2013, , 91-112.		0
185	Why are Kinesin-2 KIF3AB and KIF3AC so Processive?. Biophysical Journal, 2015, 108, 21a.	0.5	0
186	Reversible swelling of SBMV is associated with reversible disordering. Journal of Structural Biology, 2017, 200, 314-324.	2.8	0
187	A Bayesian Integrative Structure Model of the Yeast Centrosome. Biophysical Journal, 2018, 114, 35a.	0.5	0
188	Structural, Physical, and Chemical Principles. , 2013, , 17-30.		0
189	Structure of southern bean mosaic virus at 2.8 Ã resolution. , 2014, , 174-180.		0