Xiangsi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2049663/publications.pdf Version: 2024-02-01

		279798	434195
32	1,884	23	31
papers	citations	h-index	g-index
32	32	32	1545
all docs	docs citations	times ranked	citing authors

XIANCSI LIU

#	Article	IF	CITATIONS
1	Exploring hybrid Mg2+/H+ reactions of C@MgMnSiO4 with boosted voltage in magnesium-ion batteries. Electrochimica Acta, 2022, 404, 139738.	5.2	10
2	Enabling Fast Na ⁺ Transfer Kinetics in the Wholeâ€Voltageâ€Region of Hardâ€Carbon Anodes for Ultrahighâ€Rate Sodium Storage. Advanced Materials, 2022, 34, e2109282.	21.0	108
3	Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium. Nano Letters, 2022, 22, 411-418.	9.1	20
4	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	9.5	55
5	A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic battery materials. Chemical Science, 2022, 13, 7863-7872.	7.4	10
6	Mitigating the Surface Reconstruction of Ni-Rich Cathode <i>via</i> P2-Type Mn-Rich Oxide Coating for Durable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 30398-30409.	8.0	7
7	Electrochemoâ€Mechanical Effects on Structural Integrity of Niâ€Rich Cathodes with Different Microstructures in All Solidâ€5tate Batteries. Advanced Energy Materials, 2021, 11, 2003583.	19.5	112
8	Solidâ€State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Advanced Materials, 2021, 33, e2005878.	21.0	35
9	Unravelling the Fast Alkaliâ€Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie - International Edition, 2021, 60, 12547-12553.	13.8	16
10	Unravelling the Fast Alkaliâ€Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deepâ€Potential Molecular Dynamics Simulation. Angewandte Chemie, 2021, 133, 12655-12661.	2.0	0
11	O3-Type NaCrO ₂ as a Superior Cathode Material for Sodium/Potassium-Ion Batteries Ensured by High Structural Reversibility. ACS Applied Materials & Interfaces, 2021, 13, 22635-22645.	8.0	20
12	Insights of the Electrochemical Reversibility of P2-Type Sodium Manganese Oxide Cathodes via Modulation of Transition Metal Vacancies. ACS Applied Materials & Interfaces, 2021, 13, 38305-38314.	8.0	13
13	Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nature Communications, 2021, 12, 4903.	12.8	109
14	Constructing a High-Energy and Durable Single-Crystal NCM811 Cathode for All-Solid-State Batteries by a Surface Engineering Strategy. ACS Applied Materials & Interfaces, 2021, 13, 41669-41679.	8.0	35
15	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	10.3	84
16	Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy, 2020, 67, 104252.	16.0	59
17	Highly-stable P2–Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Materials, 2020, 26, 503-512.	18.0	101
18	The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nature Communications, 2020, 11, 3544.	12.8	204

Xiangsi Liu

#	Article	IF	CITATIONS
19	Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials. Energy Storage Materials, 2020, 32, 234-243.	18.0	42
20	Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nature Nanotechnology, 2020, 15, 883-890.	31.5	95
21	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	30.8	219
22	Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy, 2020, 76, 104997.	16.0	54
23	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	8.0	31
24	Insights into the lithiation mechanism of CF _x by a joint high-resolution ¹⁹ F NMR, <i>in situ</i> TEM and ⁷ Li NMR approach. Journal of Materials Chemistry A, 2019, 7, 19793-19799.	10.3	33
25	Exploring the high-voltage Mg ²⁺ /Na ⁺ co-intercalation reaction of Na ₃ VCr(PO ₄) ₃ in Mg-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18081-18091.	10.3	29
26	3D Lithiophilic "Hairy―Si Nanowire Arrays @ Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode. ACS Applied Materials & Interfaces, 2019, 11, 44325-44332.	8.0	25
27	Elucidating and Mitigating the Degradation of Cationic–Anionic Redox Processes in Li _{1.2} Mn _{0.4} Ti _{0.4} O ₂ Cation-Disordered Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 45674-45682.	8.0	31
28	P2â€Na _{0.67} Al _{<i>x</i>} Mn _{1â^'<i>x</i>} O ₂ : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie - International Edition, 2019, 58, 18086-18095.	13.8	127
29	P2â€Na 0.67 Al x Mn 1â^' x O 2 : Costâ€Effective, Stable and Highâ€Rate Sodium Electrodes by Suppressing Phas Transitions and Enhancing Sodium Cation Mobility. Angewandte Chemie, 2019, 131, 18254-18263.	e 2.0	9
30	Structure-Performance Relationship of Zn ²⁺ Substitution in P2–Na _{0.66} Ni _{0.33} Mn _{0.67} O ₂ with Different Ni/Mn Ratios for High-Energy Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4914-4924.	5.1	39
31	Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy, 2019, 58, 560-567.	16.0	43
32	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	7.8	109