
## Mohammed A Al-Saadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2049607/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Are deep eutectic solvents benign or toxic?. Chemosphere, 2013, 90, 2193-2195.                                                                                                                                                | 8.2  | 473       |
| 2  | Potential applications of deep eutectic solvents in nanotechnology. Chemical Engineering Journal, 2015, 273, 551-567.                                                                                                         | 12.7 | 415       |
| 3  | Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production, 2019, 230, 783-793.                                                                                                            | 9.3  | 312       |
| 4  | Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2016, 215,<br>98-103.                                                                                                               | 4.9  | 294       |
| 5  | Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research, 2016, 23, 13754-13788.                                                                                       | 5.3  | 265       |
| 6  | Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 2013, 93, 455-459.                                                                                                         | 8.2  | 217       |
| 7  | Functionalization of graphene using deep eutectic solvents. Nanoscale Research Letters, 2015, 10, 1004.                                                                                                                       | 5.7  | 172       |
| 8  | Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review.<br>Electrochimica Acta, 2016, 193, 321-343.                                                                                       | 5.2  | 156       |
| 9  | Physical properties of ethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids, 2019, 276, 794-800.                                                                                                        | 4.9  | 150       |
| 10 | Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water. Chemosphere, 2017, 167, 44-52.                                                                           | 8.2  | 95        |
| 11 | Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. Journal of Molecular Liquids, 2016, 222, 883-894.                                                                   | 4.9  | 90        |
| 12 | Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389, 216-226.                                                                  | 6.1  | 89        |
| 13 | Triethylene glycol based deep eutectic solvents and their physical properties. Journal of the Taiwan<br>Institute of Chemical Engineers, 2015, 50, 24-30.                                                                     | 5.3  | 83        |
| 14 | Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. Journal of Colloid and Interface Science, 2017, 497, 413-421.                                                           | 9.4  | 81        |
| 15 | Optimization of the Synthesis of Superhydrophobic Carbon Nanomaterials by Chemical Vapor<br>Deposition. Scientific Reports, 2018, 8, 2778.                                                                                    | 3.3  | 61        |
| 16 | A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their<br>performance in the adsorption of methyl orange from aqueous solution. Journal of Environmental<br>Management, 2019, 235, 521-534. | 7.8  | 58        |
| 17 | Functionalization of carbon nanotubes using eutectic mixtures: A promising route for enhanced aqueous dispersibility and electrochemical activity. Chemical Engineering Journal, 2017, 311, 326-339.                          | 12.7 | 50        |
| 18 | Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence<br>approach. Atmospheric Pollution Research, 2020, 11, 1572-1587.                                                             | 3.8  | 48        |

Mohammed A Al-Saadi

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity. PLoS ONE, 2019, 14, e0216725.                                                            | 2.5  | 42        |
| 20 | Removal of Cadmium from Water by CNT–PAC Composite: Effect of Functionalization. Nano, 2016, 11, 1650011.                                                                                                                       | 1.0  | 41        |
| 21 | Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.<br>Bioresource Technology, 2011, 102, 9564-9570.                                                                         | 9.6  | 37        |
| 22 | Efficient lead sorption from wastewater by carbon nanofibers. Environmental Chemistry Letters, 2015, 13, 341-346.                                                                                                               | 16.2 | 36        |
| 23 | PVDF-co-HFP/superhydrophobic acetylene-based nanocarbon hybrid membrane for seawater desalination via DCMD. Chemical Engineering Research and Design, 2018, 138, 248-259.                                                       | 5.6  | 32        |
| 24 | Embedded high-hydrophobic CNMs prepared by CVD technique with PVDF-co-HFP membrane for application in water desalination by DCMD. , 0, 142, 37-48.                                                                              |      | 29        |
| 25 | Prediction of high-strength concrete: high-order response surface methodology modeling approach.<br>Engineering With Computers, 2022, 38, 1655-1668.                                                                            | 6.1  | 27        |
| 26 | Synthesis and Characterization of Natural Extracted Precursor Date Palm Fibre-Based Activated Carbon for Aluminum Removal by RSM Optimization. Processes, 2019, 7, 249.                                                         | 2.8  | 26        |
| 27 | Modification of Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes with<br>DES-Functionalized Carbon Nanospheres for Removal of Methyl Orange by Membrane Distillation.<br>Water (Switzerland), 2022, 14, 1396.         | 2.7  | 26        |
| 28 | Graphene– gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools. European Journal of Medicinal Chemistry, 2017, 139, 349-366.                                                    | 5.5  | 24        |
| 29 | The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach. Water Science and Technology, 2017, 76, 2413-2426.                                            | 2.5  | 24        |
| 30 | Incorporation of artificial neural network with principal component analysis and cross-validation technique to predict high-performance concrete compressive strength. Asian Journal of Civil Engineering, 2021, 22, 1019-1031. | 1.6  | 24        |
| 31 | Chemical and Hydrophobic Properties of PLA/HNTs-ZrO <sub>2</sub> Bionanocomposites. Journal of Physics: Conference Series, 2018, 1019, 012065.                                                                                  | 0.4  | 21        |
| 32 | Data-Driven Model for the Prediction of Total Dissolved Gas: Robust Artificial Intelligence Approach.<br>Advances in Civil Engineering, 2020, 2020, 1-20.                                                                       | 0.7  | 21        |
| 33 | Application of Artificial Intelligence Models for Evapotranspiration Prediction along the Southern<br>Coast of Turkey. Complexity, 2021, 2021, 1-20.                                                                            | 1.6  | 19        |
| 34 | Synthesis and Characterization of Carbon Nanofibers Grown on Powdered Activated Carbon. Journal of Nanotechnology, 2016, 2016, 1-10.                                                                                            | 3.4  | 18        |
| 35 | Synthesis, Characterization, and Analysis of Hybrid Carbon Nanotubes by Chemical Vapor Deposition:<br>Application for Aluminum Removal. Polymers, 2020, 12, 1305.                                                               | 4.5  | 17        |
| 36 | Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal. Chinese Journal of Chemical Engineering, 2021, 32, 472-484.                       | 3.5  | 17        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate.<br>Arabian Journal of Chemistry, 2016, 9, 532-536.                                                                          | 4.9 | 15        |
| 38 | Eutectic mixture-functionalized carbon nanomaterials for selective amperometric detection of<br>nitrite using modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2018, 812,<br>107-114.          | 3.8 | 15        |
| 39 | The influence of coating super-hydrophobic carbon nanomaterials on the performance of membrane distillation. Applied Water Science, 2022, 12, 1.                                                                        | 5.6 | 15        |
| 40 | Growth and optimization of carbon nanotubes in powder activated carbon for an efficient removal<br>of methylene blue from aqueous solution. Environmental Technology (United Kingdom), 2019, 40,<br>2400-2415.          | 2.2 | 14        |
| 41 | The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon, 2020, 6, e05360.                                                  | 3.2 | 14        |
| 42 | Superhydrophobic nanocarbonâ€based membrane with antibacterial characteristics. Biotechnology<br>Progress, 2020, 36, e2963.                                                                                             | 2.6 | 14        |
| 43 | The formation of hybrid carbon nanomaterial by chemical vapor deposition: an efficient adsorbent for<br>enhanced removal of methylene blue from aqueous solution. Water Science and Technology, 2018, 77,<br>1714-1723. | 2.5 | 13        |
| 44 | BTPC-Based DES-Functionalized CNTs for As3+ Removal from Water: NARX Neural Network Approach.<br>Journal of Environmental Engineering, ASCE, 2018, 144, .                                                               | 1.4 | 13        |
| 45 | Artificial Neural Network Approach for Modelling of Mercury Ions Removal from Water Using<br>Functionalized CNTs with Deep Eutectic Solvent. International Journal of Molecular Sciences, 2019,<br>20, 4206.            | 4.1 | 13        |
| 46 | Arsenic removal from water using N,N-diethylethanolammonium chloride based DES-functionalized<br>CNTs: (NARX) neural network approach. Journal of Water Supply: Research and Technology - AQUA,<br>2018, 67, 531-542.   | 1.4 | 12        |
| 47 | Lead Sorption by Carbon Nanofibers Grown on Powdered Activated Carbon — Kinetics and<br>Equilibrium. Nano, 2015, 10, 1550017.                                                                                           | 1.0 | 11        |
| 48 | Feedforward Artificial Neural Network-Based Model for Predicting the Removal of Phenolic<br>Compounds from Water by Using Deep Eutectic Solvent-Functionalized CNTs. Molecules, 2020, 25, 1511.                         | 3.8 | 11        |
| 49 | Application of Graphitic Bio-Carbon using Two-Level Factorial Design for Microwave-assisted<br>Carbonization. BioResources, 2016, 11, .                                                                                 | 1.0 | 11        |
| 50 | Inflow forecasting using regularized extreme learning machine: Haditha reservoir chosen as case study. Stochastic Environmental Research and Risk Assessment, 2022, 36, 4201-4221.                                      | 4.0 | 11        |
| 51 | Diethylene glycol based deep eutectic solvents and their physical properties. Studia Universitatis<br>Babes-Bolyai Chemia, 2017, 62, 433-450.                                                                           | 0.2 | 10        |
| 52 | N,N-diethylethanolammonium chloride based DES-functionalized carbon nanotubes for arsenic removal from aqueous solution. , 0, 74, 163-173.                                                                              |     | 10        |
| 53 | The Effects of Tensile Properties of PLA/HNTs-ZrO <sub>2</sub> Bionanocomposites. Journal of Physics:<br>Conference Series, 2018, 1019, 012066.                                                                         | 0.4 | 9         |
| 54 | Hybridizing carbon nanomaterial with powder activated carbon for an efficient removal of Bisphenol<br>A from water: the optimum growth and adsorption conditions. , 0, 95, 128-143.                                     |     | 9         |

Mohammed A Al-Saadi

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Thermal properties of PLA/HNTs composites: Effect of different halloysite nanotube. AIP Conference<br>Proceedings, 2018, , .                                                                                                                                    | 0.4 | 8         |
| 56 | Mercury removal from water using deep eutectic solventsâ€functionalized multi walled carbon<br>nanotubes: Nonlinear autoregressive network with an exogenous input neural network approach.<br>Environmental Progress and Sustainable Energy, 2019, 38, e13261. | 2.3 | 8         |
| 57 | Optimising the Selection of Input Variables to Increase the Predicting Accuracy of Shear Strength for Deep Beams. Complexity, 2022, 2022, 1-23.                                                                                                                 | 1.6 | 7         |
| 58 | A review exploring the adsorptive removal of organic micropollutants on tailored hierarchical carbon nanotubes. Toxicological and Environmental Chemistry, 2021, 103, 282-325.                                                                                  | 1.2 | 6         |
| 59 | Lead removal from water using DES functionalized CNTs: ANN modeling approach. , 0, 150, 105-113.                                                                                                                                                                |     | 6         |
| 60 | Potassium hydroxide as a novel catalyst for metal-free carbon nanotubes growth on powder activated carbon. Physica B: Condensed Matter, 2021, 621, 413294.                                                                                                      | 2.7 | 5         |
| 61 | Study of Pb Adsorption by Carbon Nanofibers Grown on Powdered Activated Carbon. Journal of Applied Sciences, 2010, 10, 1983-1986.                                                                                                                               | 0.3 | 5         |
| 62 | Estimation of nanofiltration membrane transport parameters for cobalt ions removal from aqueous solutions. , 0, 108, 235-245.                                                                                                                                   |     | 5         |
| 63 | Adsorption of 2,4-dichlorophenol from water using deep eutectic solvents-functionalized carbon nanotubes. , 0, 116, 214-231.                                                                                                                                    |     | 5         |
| 64 | Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate. Applied Nanoscience (Switzerland), 2018, 8, 1767-1779.                                                                                                | 3.1 | 4         |
| 65 | Effect of pH, water percentage and surfactant percentage on stability of water in diesel emulsion. IOP<br>Conference Series: Materials Science and Engineering, 0, 454, 012097.                                                                                 | 0.6 | 3         |
| 66 | Probing the Effect of Gaseous Hydrocarbon Precursors on the Adsorptive Efficiency of Synthesized Carbon-based Nanomaterials. Journal of Engineering Research, 2020, 17, 47.                                                                                     | 0.2 | 3         |
| 67 | Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum<br>Super-Hydrophobicity. Symmetry, 2020, 12, 1242.                                                                                                                                | 2.2 | 2         |
| 68 | High Yield Super-Hydrophobic Carbon Nanomaterials Using Cobalt/Iron Co-Catalyst Impregnated on Powder Activated Carbon. Processes, 2021, 9, 134.                                                                                                                | 2.8 | 2         |
| 69 | The modelling of arsenic removal from water by deep eutectic solvents functionalized CNTs: Artificial neural network (ANN) approach. , 0, 94, 189-197.                                                                                                          |     | 2         |
| 70 | Modification of halloysite filler with phosphonium based deep eutectic solvents for PLA/HNTs composites. AIP Conference Proceedings, 2018, , .                                                                                                                  | 0.4 | 0         |
| 71 | Synthesis of various carbon nanomaterials (CNMs) on powdered activated carbon. African Journal of Biotechnology, 2011, 10, .                                                                                                                                    | 0.6 | 0         |