Esther Wolfs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2049134/publications.pdf

Version: 2024-02-01

840776 1058476 14 601 11 14 citations h-index g-index papers 14 14 14 1234 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition. Stem Cell Reports, 2015, 5, 918-931.	4.8	115
2	SOX10 Single Transcription Factor-Based Fast and Efficient Generation ofÂOligodendrocytes from Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 655-672.	4.8	81
3	The Angiogenic Potential of DPSCs and SCAPs in an <i>In Vivo</i> Model of Dental Pulp Regeneration. Stem Cells International, 2017, 2017, 1-14.	2.5	74
4	Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Translational Stroke Research, 2020, 11, 60-79.	4.2	73
5	Stem Cellâ€Based Therapies for Ischemic Stroke: Preclinical Results and the Potential of Imagingâ€Assisted Evaluation of Donor Cell Fate and Mechanisms of Brain Regeneration. Medicinal Research Reviews, 2016, 36, 1080-1126.	10.5	66
6	Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. Journal of Endodontics, 2017, 43, S12-S16.	3.1	64
7	The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells International, 2016, 2016, 1-17.	2.5	40
8	Cryopreservation and Banking of Dental Stem Cells. Advances in Experimental Medicine and Biology, 2016, 951, 199-235.	1.6	25
9	Angiogenic Capacity of Periodontal Ligament Stem Cells Pretreated with Deferoxamine and/or Fibroblast Growth Factor-2. PLoS ONE, 2016, 11, e0167807.	2.5	18
10	Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports, 2015, 5, 1183-1195.	4.8	17
11	The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Theranostics, 2018, 8, 2799-2813.	10.0	12
12	Preconditioning of Human Dental Pulp Stem Cells with Leukocyte- and Platelet-Rich Fibrin-Derived Factors Does Not Enhance Their Neuroregenerative Effect. Stem Cells International, 2019, 2019, 1-15.	2.5	9
13	Analysis of age-related left ventricular collagen remodeling in living donors: Implications in arrhythmogenesis. IScience, 2022, 25, 103822.	4.1	4
14	Multipotent adult progenitor cells improve the hematopoietic function in myelodysplasia. Cytotherapy, 2017, 19, 744-755.	0.7	3