Xiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/204908/publications.pdf

Version: 2024-02-01

		471509	477307
34	851	17	29
papers	citations	h-index	g-index
35	35	35	951
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enantioselective 1,2-Difunctionalization of Dienes Enabled by Chiral Palladium Complex-Catalyzed Cascade Arylation/Allylic Alkylation Reaction. Journal of the American Chemical Society, 2015, 137, 13476-13479.	13.7	153
2	Palladium (0)-Catalyzed Difunctionalization of 1,3-Dienes: From Racemic to Enantioselective. Synthesis, $2019, 51, 122-134$.	2.3	101
3	Homochiral Dodecanuclear Lanthanide "Cage in Cage―for Enantioselective Separation. Journal of the American Chemical Society, 2021, 143, 12560-12566.	13.7	59
4	Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency. Neurolmage, 2007, 35, 1654-1662.	4.2	58
5	Enantioselective Organocatalytic Addition of Nitroalkanes to Oxindolylideneindolenines for the Construction of Chiral 3,3â€Disubstituted Oxindoles. Advanced Synthesis and Catalysis, 2013, 355, 2531-2537.	4.3	50
6	A Rhodium-Catalyzed [3 + 2] Annulation of General Aromatic Aldimines/Ketimines and <i>N-</i> Substituted Maleimides. Organic Letters, 2018, 20, 5960-5963.	4.6	39
7	Access to chiral tetrahydrofluorenes through a palladium-catalyzed enantioselective tandem intramolecular Heck/Tsuji–Trost reaction. Chemical Communications, 2019, 55, 3769-3772.	4.1	33
8	Luminol, horseradish peroxidase, and glucose oxidase ternary functionalized graphene oxide for ultrasensitive glucose sensing. Analytical and Bioanalytical Chemistry, 2018, 410, 543-552.	3.7	31
9	Hybrid Gold/Chiral Brønsted Acid Relay Catalysis Allows an Enantioselective Synthesis of (â^')-5- <i>epi</i> -Eupomatilone-6. Journal of Organic Chemistry, 2014, 79, 419-425.	3.2	30
10	Gold-Catalyzed [1,5]-Hydride Shift onto Unactivated Alkynes To Trigger an Intermolecular Diels–Alder Reaction. Organic Letters, 2014, 16, 3820-3823.	4.6	29
11	Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chemical Communications, 2020, 56, 9016-9019.	4.1	29
12	An Asymmetric Dehydrogenative Diels–Alder Reaction for the Synthesis of Chiral Tetrahydrocarbazole Derivatives. Organic Letters, 2018, 20, 32-35.	4.6	25
13	Palladium-catalyzed enantioselective carboannulation of 1,3-dienes with aryl iodides enables access to chiral indanes. Chemical Communications, 2018, 54, 9595-9598.	4.1	24
14	Bottom-Up Assembly of a Highly Efficient Metal–Organic Framework for Cooperative Catalysis. Inorganic Chemistry, 2018, 57, 13912-13919.	4.0	22
15	Gold-catalyzed cyclization of 1-(2′-azidoaryl) propynols: synthesis of polysubstituted 4-quinolones. Chemical Communications, 2019, 55, 14769-14772.	4.1	19
16	A Highly Enantioselective Mannichâ€Type Reaction of Glycine Schiff Base Catalyzed by a Cinchoninium Salt. Chinese Journal of Chemistry, 2014, 32, 969-973.	4.9	17
17	Synthesis of Polycyclic Amines through Mild Metalâ€Free Tandem Crossâ€Dehydrogenative Coupling/Intramolecular Hydroarylation of <i>N</i> â€Aryltetrahydroisoquinolines and Crotonaldehyde. European Journal of Organic Chemistry, 2015, 2015, 468-473.	2.4	17
18	Remarkable Ligand Effect on Rh-Catalyzed C–H-Active [3 + 2] Annulation of Ketimines and Alkynes. Organic Letters, 2020, 22, 4903-4907.	4.6	17

#	Article	lF	CITATIONS
19	Rutheniumâ€Catalyzed Oxidative Formal Azaâ€Diels–Alder Reaction: Enantioselective Synthesis of Benzo[<i>a</i>]quinolizineâ€2â€ones. Advanced Synthesis and Catalysis, 2017, 359, 3095-3101.	4.3	14
20	Construction of 1,3-Oxazolidines through a Three-Component [3+2] Cycloaddition of Tetrahydroisoquinolines, Aldehydes, and Ethyl Ketomalonate. Journal of Organic Chemistry, 2020, 85, 6216-6224.	3.2	14
21	Enantioselective Construction of [6,5,6]-Carbocyclic Systems by Organo/Metal-Catalyzed Sequential Reactions. Journal of Organic Chemistry, 2014, 79, 4743-4750.	3.2	11
22	Enantioselective Conjugate Addition of Aryl Halides and Triflates to Electron-Deficient Olefins via Nickel- and Rhodium-Catalyzed Sequential Relay Reactions. Organic Letters, 2019, 21, 8888-8892.	4.6	8
23	Enantioseparation in Hierarchically Porous Assemblies of Homochiral Cages. ACS Central Science, 2022, 8, 562-570.	11,3	8
24	Oxidative Asymmetric Formal Aza-Diels–Alder Reactions of Tetrahydro-β-carboline with Enones in the Synthesis of Indoloquinolizidine-2-ones. Molecules, 2018, 23, 2228.	3.8	7
25	Pd/Câ€Catalyzed Dehydrogenative [3+2] Cycloaddition for the Synthesis of Functionalized Tropanes. European Journal of Organic Chemistry, 2018, 2018, 5456-5459.	2.4	7
26	Intramolecular $[2 + 2]$ Cycloadditions of Alkyl(phenylthio)ketenes: Total Synthesis of $(+)$ -Sphaerodiol. Organic Letters, 2018, 20, 1871-1874.	4.6	6
27	Access to 3-Sulfonamidoquinolines by Gold-Catalyzed Cyclization of 1-(2′-Azidoaryl)propargylsulfonamides through 1,2- <i>N</i> NN digration. Journal of Organic Chemistry, 2022, 87, 801-812.	3.2	5
28	A biomimetic metal–organic framework with cuboid inner cavities for enantioselective separation. Inorganic Chemistry Frontiers, 2022, 9, 2683-2690.	6.0	5
29	Enantioselective γâ€Alkylation of α,βâ€Unsaturated Aldehydes Using New Cinchonaâ€Based Primary Amine Catalyst. European Journal of Organic Chemistry, 2019, 2019, 6838-6841.	2.4	4
30	Enantioselective synthesis of 1-aminoindene derivatives via asymmetric $\text{Br}\tilde{A}_{,}$ nsted acid catalysis. Chemical Communications, 2021, 57, 9680-9683.	4.1	3
31	Unexpected Grob-type fragmentation of vinylogous \hat{I}^2 -silyloxy-cyclobutanone into \hat{I}^3 -lactone. Chinese Chemical Letters, 2017, 28, 968-970.	9.0	1
32	Access to chiral 1-aminoindene derivatives by asymmetric Br \tilde{A} ,nsted acid catalysis. Synlett, 0, 33, .	1.8	1
33	Copperâ€Catalyzed Direct Oxidative αâ€Alkoxylation of 4â€ksochromanones. European Journal of Organic Chemistry, 2021, 2021, 2436-2439.	2.4	0
34	A model study for the total synthesis of lophotoxin. Tetrahedron Letters, 2021, , 153481.	1.4	0