Rachael H Nolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2049066/publications.pdf

Version: 2024-02-01

55 papers

3,655 citations

218662 26 h-index 56 g-index

60 all docs 60 does citations

60 times ranked

5732 citing authors

#	Article	IF	CITATIONS
1	Recovery from Severe Mistletoe Infection After Heat- and Drought-Induced Mistletoe Death. Ecosystems, 2022, 25, 1-16.	3.4	9
2	Extreme fire weather is the major driver of severe bushfires in southeast Australia. Science Bulletin, 2022, 67, 655-664.	9.0	16
3	Framework for assessing live fine fuel loads and biomass consumption during fire. Forest Ecology and Management, 2022, 504, 119830.	3.2	8
4	Fuel consumption rates in resprouting eucalypt forest during hazard reduction burns, cultural burns and wildfires. Forest Ecology and Management, 2022, 505, 119894.	3.2	12
5	Fire severity and its local extent are key to assessing impacts of Australian megaâ€fires on koala (<i>Phascolarctos cinereus</i>) density. Global Ecology and Biogeography, 2022, 31, 714-726.	5.8	12
6	An integrated approach to assessing abiotic and biotic threats to postâ€fire plant species recovery: Lessons from the 2019–2020 Australian fire season. Global Ecology and Biogeography, 2022, 31, 2056-2069.	5.8	14
7	Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content. Agricultural and Forest Meteorology, 2022, 319, 108941.	4.8	11
8	Megafireâ€induced interval squeeze threatens vegetation at landscape scales. Frontiers in Ecology and the Environment, 2022, 20, 327-334.	4.0	31
9	Warmer and drier conditions have increased the potential for large and severe fire seasons across southâ€eastern Australia. Global Ecology and Biogeography, 2022, 31, 1933-1948.	5.8	36
10	What do you mean, â€~megafire'?. Global Ecology and Biogeography, 2022, 31, 1906-1922.	5.8	37
11	The carbon cost of the 2019–20 Australian fires varies with fire severity and forest type. Global Ecology and Biogeography, 2022, 31, 2131-2146.	5.8	3
12	A semi-mechanistic model for predicting daily variations in species-level live fuel moisture content. Agricultural and Forest Meteorology, 2022, 323, 109022.	4.8	7
13	The post-fire stability index; a new approach to monitoring post-fire recovery by satellite imagery. Remote Sensing of Environment, 2022, 280, 113151.	11.0	6
14	The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environmental Research Letters, 2021, 16, 044029.	5.2	146
15	Hydraulic failure and tree size linked with canopy dieâ€back in eucalypt forest during extreme drought. New Phytologist, 2021, 230, 1354-1365.	7.3	70
16	Some Challenges for Forest Fire Risk Predictions in the 21st Century. Forests, 2021, 12, 469.	2.1	13
17	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	9.9	65
18	Limits to postâ€fire vegetation recovery under climate change. Plant, Cell and Environment, 2021, 44, 3471-3489.	5.7	90

#	Article	IF	CITATIONS
19	Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2021, 2, .	6.8	341
20	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26
21	What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?. Fire, 2021, 4, 97.	2.8	45
22	Waterâ€use efficiency in a semiâ€arid woodland with high rainfall variability. Global Change Biology, 2020, 26, 496-508.	9.5	40
23	Causes and consequences of eastern Australia's 2019–20 season of megaâ€fires. Global Change Biology, 2020, 26, 1039-1041.	9.5	292
24	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
25	Carbon and water fluxes in two adjacent Australian semi-arid ecosystems. Agricultural and Forest Meteorology, 2020, 281, 107853.	4.8	17
26	Organic Carbon Stocks of Mexican Montane Habitats: Variation Among Vegetation Types and Land-Use. Frontiers in Environmental Science, 2020, 8, .	3.3	7
27	Linking Forest Flammability and Plant Vulnerability to Drought. Forests, 2020, 11, 779.	2.1	64
28	Bark attributes determine variation in fire resistance in resprouting tree species. Forest Ecology and Management, 2020, 474, 118385.	3.2	20
29	Circadian Regulation Does Not Optimize Stomatal Behaviour. Plants, 2020, 9, 1091.	3.5	8
30	A broader perspective on the causes and consequences of eastern Australia's 2019–20 season of megaâ€fires: A response to Adams et al Global Change Biology, 2020, 26, e8-e9.	9.5	20
31	Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Scientific Data, 2019, 6, 155.	5.3	41
32	Storage of organic carbon in the soils of Mexican temperate forests. Forest Ecology and Management, 2019, 446, 115-125.	3.2	22
33	Risks to carbon dynamics in semi-arid woodlands of eastern Australia under current and future climates. Journal of Environmental Management, 2019, 235, 500-510.	7.8	12
34	Assessing China's agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecological Indicators, 2019, 96, 329-335.	6.3	77
35	Estimation of eventâ€based rainfall erosivity from radar after wildfire. Land Degradation and Development, 2019, 30, 33-48.	3.9	6
36	Recovery potential of microwetlands from agricultural land uses. Ecological Management and Restoration, 2018, 19, 81-84.	1.5	2

#	Article	IF	CITATIONS
37	Biophysical risks to carbon sequestration and storage in Australian drylands. Journal of Environmental Management, 2018, 208, 102-111.	7.8	19
38	Contrasting ecophysiology of two widespread arid zone tree species with differing access to water resources. Journal of Arid Environments, 2018, 153, 1-10.	2.4	15
39	Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agricultural and Forest Meteorology, 2018, 263, 417-427.	4.8	42
40	Speculations on the application of foliar & amp; lt; sup & amp; lt; lsup & amp; gt; C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use. Hydrology and Earth System Sciences, 2018, 22, 4875-4889.	4.9	2
41	Safeguarding reforestation efforts against changes in climate and disturbance regimes. Forest Ecology and Management, 2018, 424, 458-467.	3.2	14
42	Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant, Cell and Environment, 2017, 40, 3122-3134.	5.7	67
43	Biophysical controls of soil respiration in a wheat-maize rotation system in the North China Plain. Agricultural and Forest Meteorology, 2017, 246, 231-240.	4.8	28
44	Stand-level variation in evapotranspiration in non-water-limited eucalypt forests. Journal of Hydrology, 2017, 551, 233-244.	5.4	16
45	Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire. Earth's Future, 2017, 5, 1196-1202.	6.3	73
46	Variation in photosynthetic traits related to access to water in semiarid Australian woody species. Functional Plant Biology, 2017, 44, 1087.	2.1	14
47	Divergence in plant water-use strategies in semiarid woody species. Functional Plant Biology, 2017, 44, 1134.	2.1	15
48	Mulga, a major tropical dry open forest of Australia: recent insights to carbon and water fluxes. Environmental Research Letters, 2016, 11, 125011.	5.2	19
49	Largeâ€scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophysical Research Letters, 2016, 43, 4229-4238.	4.0	148
50	Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote Sensing of Environment, 2016, 174, 100-108.	11.0	74
51	A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 2015, 203, 64-73.	4.8	91
52	Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. Journal of Hydrology, 2015, 524, 614-624.	5.4	59
53	Changes in evapotranspiration following wildfire in resprouting eucalypt forests. Ecohydrology, 2014, 7, 1363-1377.	2.4	50
54	Structural adjustments in resprouting trees drive differences in post-fire transpiration. Tree Physiology, 2014, 34, 123-136.	3.1	33

#	Article	lF	CITATIONS
55	Time lags in provision of habitat resources through revegetation. Biological Conservation, 2008, 141, 174-186.	4.1	207