Miroslav Kocifaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2049047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light pollution as a factor in breast and prostate cancer. Science of the Total Environment, 2022, 806, 150918.	8.0	24
2	Diffuse light around cities: New perspectives in satellite remote sensing of nighttime aerosols. Atmospheric Research, 2022, 266, 105969.	4.1	9
3	The significant impact of shape deviations of atmospheric aerosols on light monitoring networks. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1805-1813.	4.4	3
4	Estimating linear radiance indicators from the zenith night-sky brightness: on the Posch ratio for natural and light-polluted skies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2125-2134.	4.4	4
5	Towards a global map of the artificial all-sky brightness. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 513, L25-L29.	3.3	0
6	Nighttime Atmospheric Scattering Phase Function Derived From the Scattered Light of a Laser Beam. Geophysical Research Letters, 2022, 49, .	4.0	2
7	Multiple Angle Observations Would Benefit Visible Band Remote Sensing Using Night Lights. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	15
8	The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 504, L40-L44.	3.3	27
9	Air pollution mitigation can reduce the brightness of the night sky in and near cities. Scientific Reports, 2021, 11, 14622.	3.3	21
10	Editorial: Special issue light pollution: theory, modelling, and measurements (2019). Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 269, 107499.	2.3	0
11	Using ground-based measurements to recover the spectra of radiation escaping from distant light-pollution sources. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2739-2745.	4.4	5
12	Electromagnetic resonances observed in small, charged particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107798.	2.3	3
13	Physics interpretation of ISO/CIE sky types. Solar Energy, 2021, 225, 3-10.	6.1	2
14	The Nature, Amplitude and Control of Microwave Attenuation in the Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034978.	3.3	6
15	Variability of Diffuse Daylight Due to the Diversity of Cloud Arrays. Applied Sciences (Switzerland), 2021, 11, 9190.	2.5	0
16	Charge-controlled optical resonances in small particles: Recent developments, challenges and prospects. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 240, 106703.	2.3	6
17	Optical properties of charged nonspherical particles determined using the discrete dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254, 107245.	2.3	5
18	Night-sky imaging as a potential tool for characterization of total lumen output from small and medium-sized cities. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5008-5017.	4.4	4

#	Article	IF	CITATIONS
19	Aerosol characterization using satellite remote sensing of light pollution sources at night. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L76-L80.	3.3	13
20	Are population-based models advantageous in estimating the lumen outputs from light-pollution sources?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L138-L141.	3.3	5
21	Multi-wavelength radiometry of aerosols designed for more accurate night sky brightness predictions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 106998.	2.3	1
22	Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107120.	2.3	16
23	Where is the machine looking? Locating discriminative light-scattering features by class-activation mapping. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 247, 106936.	2.3	11
24	Emission spectra of light-pollution sources determined from the light-scattering spectrometry of the night sky. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5586-5594.	4.4	2
25	Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L47-L51.	3.3	8
26	Two-index model for characterizing site-specific night sky brightness patterns. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1953-1960.	4.4	6
27	An Accurate Prediction of Daylight Pipe Harvesting of Interior Space. Applied Sciences (Switzerland), 2019, 9, 3552.	2.5	3
28	Impacts of surface albedo variations on the night sky brightness – A numerical and experimental analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106648.	2.3	22
29	Ground albedo impacts on higher-order scattering spectral radiances of night sky. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106670.	2.3	4
30	Designing of light-pipe diffuser through its computed optical properties: A novel solution technique and some consequences. Solar Energy, 2019, 190, 386-395.	6.1	4
31	An asymptotic formula for skyglow modelling over a large territory. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2214-2224.	4.4	9
32	Night-sky radiometry can revolutionize the characterization of light-pollution sources globally. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7712-7717.	7.1	33
33	PePSS - A portable sky scanner for measuring extremely low night-sky brightness. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210, 74-81.	2.3	7
34	Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 212, 10-23.	2.3	31
35	Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 260-272.	2.3	36
36	Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants. Journal of Environmental Management, 2018, 209, 484-494.	7.8	5

Miroslav Kocifaj

#	Article	IF	CITATIONS
37	Towards a comprehensive city emission function (CCEF). Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 205, 253-266.	2.3	22
38	Bended Light-Guide Modeling Under Broken Cloud Arrays. , 2018, , .		0
39	SkyGlow Model Successfully Applied to the Evaluation of the Light Pollution over Tucson, U.S , 2018, , .		0
40	Accurate tool for express optical efficiency analysis of cylindrical light-tubes with arbitrary aspect ratios. Solar Energy, 2018, 169, 264-269.	6.1	13
41	Straight light pipes' daylighting: A case study for different climatic zones. Solar Energy, 2018, 170, 56-63.	6.1	20
42	An advanced clear-sky model for more accurate irradiance and illuminance predictions for arbitrarily oriented inclined surfaces. Renewable Energy, 2017, 106, 212-221.	8.9	9
43	Research on spectral factors towards determining nocturnal ground irradiance under overcast sky conditions in densely populated regions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 126-132.	2.3	2
44	Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows. Nature Geoscience, 2017, 10, 270-273.	12.9	71
45	Recognition of the carbon thin films sub-structures: thermo-optical measurements. Chemical Papers, 2017, 71, 2167-2171.	2.2	0
46	Sky Quality Meter measurements in a colour-changing world. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2966-2979.	4.4	90
47	Submicrometer-sized nonspherical particle separation by laser beam. Applied Optics, 2017, 56, 8081.	1.8	0
48	Retrieval of angular emission function from whole-city light sources using night-sky brightness measurements. Optica, 2017, 4, 255.	9.3	10
49	Angular Emission Function of a City and Skyglow Modeling: A Critical Perspective. Publications of the Astronomical Society of the Pacific, 2016, 128, 124001.	3.1	9
50	Broadband and luminous extinction coefficients in a clean and dry atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 173, 20-25.	2,3	5
51	Urban artificial light emission function determined experimentally using night sky images. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 181, 87-95.	2.3	12
52	Editorial: Special issue on remote sensing of light pollution. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 181, 1.	2.3	0
53	A review of the theoretical and numerical approaches to modeling skyglow: Iterative approach to RTE, MSOS, and two-stream approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 181, 2-10.	2.3	18
54	Rapid approach to the quantitative determination of nocturnal ground irradiance in populated territories: a clear-sky case. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2739-2746.	4.4	1

#	Article	IF	CITATIONS
55	Optical characterization of electrically charged particles using discrete dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 161-166.	2.3	6
56	Modeling the night sky brightness distribution via new SkyClow Simulator. , 2016, , .		6
57	Statistical cloud coverage as determined from sunshine duration: a model applicable in daylighting and solar energy forecasting. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 150-151, 1-8.	1.6	4
58	Optical resonances in electrically charged particles and their relation to the Drude model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 178, 224-229.	2.3	12
59	Modeling diffuse irradiance under arbitrary and homogeneous skies: Comparison and validation. Applied Energy, 2016, 166, 117-127.	10.1	18
60	A role of aerosol particles in forming urban skyglow and skyglow from distant cities. Monthly Notices of the Royal Astronomical Society, 2016, 458, 438-448.	4.4	12
61	The spectral amplification effect of clouds to the night sky radiance in Madrid. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 181, 11-23.	2.3	38
62	Urban night-sky luminance due to different cloud types: A numerical experiment. Lighting Research and Technology, 2016, 48, 1017-1033.	2.7	13
63	A rapid approximate inversion of extinction data for partially absorbing particles. Optik, 2015, 126, 4832-4836.	2.9	1
64	Retrieval of Garstang's emission function from all-sky camera images. Monthly Notices of the Royal Astronomical Society, 2015, 453, 819-827.	4.4	19
65	Chargeâ€induced electromagnetic resonances in nanoparticles. Annalen Der Physik, 2015, 527, 765-769.	2.4	26
66	Generalization of electromagnetic scattering by charged grains through incorporation of interband and intraband effects. Optics Letters, 2015, 40, 5070.	3.3	28
67	Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2-27.	4.4	45
68	Topical issue on optical particle characterization and remote sensing of the atmosphere: Part II. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153, 1-3.	2.3	3
69	An insolation activated dust layer on Mars. Icarus, 2015, 260, 23-28.	2.5	18
70	X-ray scattering in the elastic regime as source for 3D imaging reconstruction technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166, 64-67.	2.3	0
71	Optical signatures of electrically charged particles: Fundamental problems and solutions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 164, 45-53.	2.3	25
72	Unified model of radiance patterns under arbitrary sky conditions. Solar Energy, 2015, 115, 40-51.	6.1	30

#	Article	IF	CITATIONS
73	Aspect ratio as a function of particle radius: Inversion of extinction and scattering data. Atmospheric Environment, 2015, 109, 19-22.	4.1	3
74	Orbital evolution of dust in the Edgeworth–Kuiper belt zone. Monthly Notices of the Royal Astronomical Society, 2015, 450, 523-532.	4.4	0
75	On the relation between zenith sky brightness and horizontal illuminance. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2895-2901.	4.4	19
76	Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source. Journal of Optics (United Kingdom), 2015, 17, 105607.	2.2	8
77	Effect of charged-particle surface excitations on near-field optics. Applied Optics, 2015, 54, 6674.	2.1	18
78	Backscatter in a cloudy atmosphere as a lightning-threat indicator. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150, 175-180.	2.3	16
79	A SYSTEM AND A DEVICE FOR ISOLATING CIRCULATING TUMOR CELLS FROM THE PERIPHERAL BLOOD IN VIVO. Acta Polytechnica, 2015, 55, 242.	0.6	0
80	Quantitative analysis of night skyglow amplification under cloudy conditions. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3665-3674.	4.4	26
81	Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3405-3413.	4.4	13
82	Modeling the aerosol effects on the light field below a tubular-pipe: A case of clear sky conditions. Solar Energy, 2014, 107, 122-134.	6.1	2
83	Editorial: Special issue on light pollution. Lighting Research and Technology, 2014, 46, 3-3.	2.7	2
84	Uncertainty of daylight illuminance on vertical building façades when determined from sky scanner data: A numerical study. Solar Energy, 2014, 110, 15-21.	6.1	9
85	Modeling the night-sky radiances and inversion of multi-angle and multi-spectral radiance data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 139, 35-42.	2.3	10
86	Night sky luminance under clear sky conditions: Theory vs. experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 139, 43-51.	2.3	10
87	Polyvinylpyrrolidone thin film pyrolysis as accessed by the real-time optical transmission measurements. Journal of Thermal Analysis and Calorimetry, 2013, 114, 417-422.	3.6	2
88	Modeling the optical transmission of crystalline-glass materials composed of densely packed Mie particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 131, 115-120.	2.3	1
89	Skyglow effects in UV and visible spectra: Radiative fluxes. Journal of Environmental Management, 2013, 127, 300-307.	7.8	13
90	Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions. Optik, 2013, 124, 3165-3169.	2.9	11

#	Article	IF	CITATIONS
91	Optics of hemispherical top dome and its effect on tubular light guide efficiency: diffuse light case. Applied Optics, 2013, 52, 1100.	1.8	2
92	Theoretical conditions for charge-induced normal modes in spherical particles. Laser Physics Letters, 2013, 10, 055901.	1.4	5
93	Blurring the boundaries between Standard General Sky types due to multiple scattering of light. Lighting Research and Technology, 2013, 45, 485-494.	2.7	3
94	Evaluating Potential Spectral Impacts of Various Artificial Lights on Melatonin Suppression, Photosynthesis, and Star Visibility. PLoS ONE, 2013, 8, e67798.	2.5	140
95	Light Pollution in Ultraviolet and Visible Spectrum: Effect on Different Visual Perceptions. PLoS ONE, 2013, 8, e56563.	2.5	25
96	Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution. Optics Letters, 2012, 37, 265.	3.3	39
97	Two-stream approximation for rapid modeling the light pollution levels in local atmosphere. Astrophysics and Space Science, 2012, 341, 301-307.	1.4	5
98	Optical properties of a polydispersion of small charged cosmic dust particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2561-2566.	2.3	13
99	Availability of luminous flux below a bended light-pipe: Design modelling under optimal daylight conditions. Solar Energy, 2012, 86, 2753-2761.	6.1	20
100	Computed optical transmission records: An effect of dense-medium phase function as an approximate description of multiple light scattering. Journal of Non-Crystalline Solids, 2012, 358, 360-363.	3.1	2
101	Angular distribution of scattered radiation under broken cloud arrays: An approximation of successive orders of scattering. Solar Energy, 2012, 86, 3575-3586.	6.1	35
102	Aerosol size distribution retrievals from sunphotometer measurements: Theoretical evaluation of errors due to circumsolar and related effects. Atmospheric Environment, 2012, 51, 131-139.	4.1	2
103	Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories. Monthly Notices of the Royal Astronomical Society, 2012, 422, 819-830.	4.4	50
104	On some microphysical properties of dust grains captured into resonances with Neptune. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1665-1673.	4.4	2
105	Daylight Science and Daylighting Technology. , 2012, , .		37
106	Propagation of Light in the Atmospheric Environment. , 2011, , 97-125.		1
107	Daylight Methods and Tools to Design Glazed Windows and Skylights. , 2011, , 233-255.		0

#	Article	IF	CITATIONS
109	Approximate analytical scattering phase function dependent on microphysical characteristics of dust particles. Applied Optics, 2011, 50, 2493.	2.1	7
110	Light scattering simulations relevant to crystallization of lithiumdisilicate glass. Journal of Non-Crystalline Solids, 2011, 357, 1452-1454.	3.1	3
111	A numerical experiment on light pollution from distant sources. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3609-3615.	4.4	26
112	Theoretical evaluation of errors in aerosol optical depth retrievals from ground-based direct-sun measurements due to circumsolar and related effects. Atmospheric Environment, 2011, 45, 1050-1058.	4.1	12
113	Theoretical thermo-optical patterns relevant to glass crystallisation. Chemical Papers, 2011, 65, .	2.2	1
114	Radiative cooling within illuminated layers of dust on (pre)-planetary surfaces and its effect on dust ejection. Icarus, 2011, 211, 832-838.	2.5	17
115	Dust ejection from planetary bodies by temperature gradients: Laboratory experiments. Icarus, 2011, 212, 935-940.	2.5	24
116	CIE standard sky model with reduced number of scaling parameters. Solar Energy, 2011, 85, 553-559.	6.1	7
117	Luminous intensity solid of tubular light guide and its characterization using "asymmetry parameter― Solar Energy, 2011, 85, 2003-2010.	6.1	10
118	The influence of ground reflectance on the overcast sky luminance. Lighting Research and Technology, 2011, 43, 45-54.	2.7	1
119	Modelling clear sky colours: A single scattering approach. Lighting Research and Technology, 2011, 43, 497-513.	2.7	6
120	Tubular Light Guides: Estimation of Indoor Illuminance Levels. LEUKOS - Journal of Illuminating Engineering Society of North America, 2010, 6, 241-252.	2.9	4
121	Luminous effectiveness of tubular light-guides in tropics. Applied Energy, 2010, 87, 3460-3466.	10.1	23
122	Nonspherical zodiacal dust particles driven by radiation pressure. Planetary and Space Science, 2010, 58, 1050-1054.	1.7	1
123	Theoretical solution for light transmission of a bended hollow light guide. Solar Energy, 2010, 84, 1422-1432.	6.1	21
124	Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method. Solar Energy, 2010, 84, 2112-2119.	6.1	9
125	The effect of spatial and spectral heterogeneity of ground-based light sources on night-sky radiances. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1203-1212.	4.4	5
126	Dust ejection from (pre-)planetary bodies by temperature gradients: radiative and heat transfer. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	5

#	Article	IF	CITATIONS
127	Modelling the spectral behaviour of night skylight close to artificial light sources. Monthly Notices of the Royal Astronomical Society, 2010, 403, 2105-2110.	4.4	8
128	ON THE SCATTERING OF ELECTROMAGNETIC WAVES BY A CHARGED SPHERE. Progress in Electromagnetics Research, 2010, 109, 17-35.	4.4	52
129	The 250th anniversary of daylight science: Looking back and looking forward. Lighting Research and Technology, 2010, 42, 479-486.	2.7	4
130	Overcast sky luminance is dependent on the physical state of the atmosphere below cloud level. Lighting Research and Technology, 2010, 42, 149-159.	2.7	8
131	Analytical solution for daylight transmission via hollow light pipes with a transparent glazing. Solar Energy, 2009, 83, 186-192.	6.1	26
132	Sky luminance/radiance model with multiple scattering effect. Solar Energy, 2009, 83, 1914-1922.	6.1	24
133	A review of the effects of light scattering on the dynamics of irregularly shaped dust grains in the Solar System. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 879-888.	2.3	5
134	Efficient tubular light guide with two-component glazing with Lambertian diffuser and clear glass. Applied Energy, 2009, 86, 1031-1036.	10.1	18
135	Light pollution model for cloudy and cloudless night skies with ground-based light sources: errata. Applied Optics, 2009, 48, 4650.	2.1	4
136	On the uncertainty of the transmission function of the optically thick AGB dust shells. Astrophysics and Space Science, 2008, 317, 31-38.	1.4	3
137	Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1404-1416.	2.3	33
138	Optical properties of single mixed-phase aerosol particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 2108-2123.	2.3	25
139	HOLIGILM: Hollow light guide interior illumination method – An analytic calculation approach for cylindrical light-tubes. Solar Energy, 2008, 82, 247-259.	6.1	46
140	Times of inspiralling for interplanetary dust grains. Monthly Notices of the Royal Astronomical Society, 2008, , .	4.4	7
141	Dynamics of dust grains with a vaporable icy mantle. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1771-1777.	4.4	4
142	Light absorption by coated nano-sized carbonaceous particles. Atmospheric Environment, 2008, 42, 2571-2581.	4.1	25
143	Retrieval of aerosol aspect ratio from optical measurements in Vienna. Atmospheric Environment, 2008, 42, 2582-2592.	4.1	14
144	Light pollution simulations for planar ground-based light sources. Applied Optics, 2008, 47, 792.	2.1	21

#	Article	IF	CITATIONS
145	Nonspherical dust grains in mean-motion orbital resonances. Astronomy and Astrophysics, 2008, 483, 311-315.	5.1	5
146	Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Applied Optics, 2007, 46, 3013.	2.1	96
147	Scattering of electromagnetic waves by charged spheres and some physical consequences. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106, 170-183.	2.3	86
148	Poynting-Robertson effect and perihelion motion. Astronomy and Astrophysics, 2007, 464, 127-134.	5.1	5
149	Angular scattering of the Gobi Desert aerosol and its influence on radiative forcing. Journal of Aerosol Science, 2006, 37, 1287-1302.	3.8	18
150	Simulation of the optical properties of single composite aerosols. Journal of Aerosol Science, 2006, 37, 1683-1695.	3.8	23
151	Temperature-influenced dynamics of small dust particles. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1876-1884.	4.4	10
152	Effect of radiation on dust particles in orbital resonances. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 100, 187-198.	2.3	6
153	Perihelion motion of small irregular dust particles due to radiation forces. Planetary and Space Science, 2006, 54, 379-393.	1.7	5
154	Optical properties of urban aerosols in the region Bratislava–Vienna I. Methods and tests. Atmospheric Environment, 2006, 40, 1922-1934.	4.1	18
155	Optical properties of urban aerosols in the region Bratislava–Vienna—II: Comparisons and results. Atmospheric Environment, 2006, 40, 1935-1948.	4.1	12
156	Retrieval of size distribution for urban aerosols using multispectral optical data. Journal of Physics: Conference Series, 2005, 6, 97-102.	0.4	6
157	Motion of dust near exterior resonances with planet. Journal of Physics: Conference Series, 2005, 6, 126-131.	0.4	5
158	Inversion of extinction data for irregularly shaped particles. Atmospheric Environment, 2005, 39, 1481-1495.	4.1	15
159	Reevaluation of the quondam dust trend in the middle atmosphere. Applied Optics, 2005, 44, 7378.	2.1	4
160	The capture of interstellar dust: the Lorentz force case. Planetary and Space Science, 2004, 52, 839-847.	1.7	4
161	Dynamical behaviour of interstellar dust particles in the solar system. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 165-177.	2.3	4
162	Invariant of motion for interstellar dust captured in the solar system. Proceedings of the International Astronomical Union, 2004, 2004, 415-420.	0.0	1

#	Article	IF	CITATIONS
163	Nonspherical dust in exterior resonances with Neptune. Proceedings of the International Astronomical Union, 2004, 2004, 421-424.	0.0	1
164	The capture of interstellar dust: the pure electromagnetic radiation case. Planetary and Space Science, 2003, 51, 617-626.	1.7	4
165	Simplified Solution of the Inverse Problem for Instantaneous Cometary Dust Size Distribution. , 2002, , 159-170.		Ο
166	Motion of nonspherical dust particle under the action of electromagnetic radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70, 595-610.	2.3	22
167	On applicability of model aerosol distributions for urban region of Bratislava city. Atmospheric Environment, 2001, 35, 5105-5115.	4.1	6
168	Interaction of Stationary Nonspherical Interplanetary Dust Particle with Solar Electromagnetic Radiation. , 2001, , 359-361.		0
169	Optical effects of irregular cosmic dust particle U2015 B10. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63, 1-14.	2.3	17
170	USING THE MULTIPLE SCATTERING THEORY FOR CALCULATION OF THE RADIATION FLUXES FROM EXPERIMENTAL AEROSOL DATA. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60, 933-942.	2.3	24
171	Retrieving the size distribution of microparticles by scanning the diffraction halo with a mobile ring-gap detector. Journal of Aerosol Science, 1997, 28, 797-804.	3.8	6
172	Test of gamma function as particle size distribution using radiance data. Journal of Aerosol Science, 1996, 27, S563-S564.	3.8	0
173	Theory of optical identification of submicron particles in high atmosphere. Earth, Moon and Planets, 1995, 68, 385-388.	0.6	Ο
174	Influence of stratospheric dust layer particles on vertical changes of energy distribution in the shortwave spectrum. Studia Geophysica Et Geodaetica, 1995, 39, 37-48.	0.5	0
175	Diffusion of radiation in planetary atmospheres. Earth, Moon and Planets, 1994, 65, 21-29.	0.6	1
176	The utilization of the lunar eclipse effect for characterization of microparticles in high atmosphere. Studia Geophysica Et Geodaetica, 1994, 38, 304-315.	0.5	4
177	Relation between the structure of particles of the dispersion layer and its spectral optical thickness in an optically thin environment. Studia Geophysica Et Geodaetica, 1994, 38, 399-415.	0.5	4
178	A method of computing the vertical profile of ozone concentration based on radiation field analysis. Studia Geophysica Et Geodaetica, 1994, 38, 416-422.	0.5	0
179	14.P.21 Vertical gradient of particle concentration and variability of diffuse and direct solar radiation. Journal of Aerosol Science, 1994, 25, 585-586.	3.8	1
180	Solving the diffusion of solar radiation in the atmosphere and identifying the aerosol structure. Atmospheric Environment, 1994, 28, 777-783.	4.1	4

#	Article	IF	CITATIONS
181	35 P 02 Influence of aerosol on solar radiation fluxes. Journal of Aerosol Science, 1993, 24, S383-S384.	3.8	1
182	Vertical profile calculation of the attenuation coefficient of atmospheric aerosol based on the spectral radiance measurements of day-sky. Studia Geophysica Et Geodaetica, 1992, 36, 376-391.	0.5	4
183	Scalar multiple scattering model for remote sensing applications. , 0, , .		0
184	Modelled impacts of a potential light emitting diode lighting system conversion and the influence of an extremely polluted atmosphere in Mexico City. Environment and Planning B: Urban Analytics and City Science, 0, , 239980832110127.	2.0	4