
Maximillian A Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048980/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipoprotein(a) Induces Vesicular Cardiovascular Calcification Revealed With Single-Extracellular Vesicle Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 778919.	1.1	12
2	ApoC-III is a novel inducer of calcification in human aortic valves. Journal of Biological Chemistry, 2021, 296, 100193.	1.6	28
3	CROT (Carnitine O-Octanoyltransferase) Is a Novel Contributing Factor in Vascular Calcification via Promoting Fatty Acid Metabolism and Mitochondrial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 755-768.	1.1	17
4	Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovascular Research, 2021, 117, 2340-2353.	1.8	16
5	Unbiased omics identifies mechanistic regulators of calcific aortic valve disease. European Heart Journal, 2021, 42, 2948-2950.	1.0	2
6	Retinoids Repress Human Cardiovascular Cell Calcification With Evidence for Distinct Selective Retinoid Modulator Effects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 656-669.	1.1	17
7	An (Auto)Taxing Effort to Mechanistically Link Obesity and Calcific Aortic Valve Disease. JACC Basic To Translational Science, 2020, 5, 898-900.	1.9	1
8	Annexin A1–dependent tethering promotes extracellular vesicle aggregation revealed with single–extracellular vesicle analysis. Science Advances, 2020, 6, .	4.7	65
9	Complex association of lipoprotein(a) with aortic stenosis. Heart, 2020, 106, 711-712.	1.2	3
10	Differential Mechanisms of Arterial and Valvular Calcification. Contemporary Cardiology, 2020, , 73-95.	0.0	0
11	Standardization of Human Calcific Aortic Valve Disease in vitro Modeling Reveals Passage-Dependent Calcification. Frontiers in Cardiovascular Medicine, 2019, 6, 49.	1.1	49
12	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	1.2	187
13	MicroRNA Extracellular Vesicle Stowaways in Cell-Cell Communication and Organ Crosstalk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2448-2450.	1.1	5
14	Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nature Reviews Cardiology, 2019, 16, 261-274.	6.1	121
15	Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Circulation, 2018, 138, 377-393.	1.6	180
16	Sterol Metabolism and Transport in Atherosclerosis and Cancer. Frontiers in Endocrinology, 2018, 9, 509.	1.5	39
17	Transcriptional control of intestinal cholesterol absorption, adipose energy expenditure and lipid handling by Sortilin. Scientific Reports, 2018, 8, 9006.	1.6	17
18	Abstract 595: Transcriptional Control of Intestinal Cholesterol Absorption, Adipose Energy Expenditure and Lipid Handling by Sortilin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	2

#	Article	IF	CITATIONS
19	Abstract 175: Dynamin-Related Protein 1 Regulates Proteostasis and Proprotein Convertase Subtilisin/Kexin Type 9 Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	Ο
20	Abstract 228: Multi-omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	1.1	0
21	Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circulation Research, 2017, 121, 220-233.	2.0	88
22	Macrophage Heterogeneity Complicates Reversal of Calcification in Cardiovascular Tissues. Circulation Research, 2017, 121, 5-7.	2.0	22
23	A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis, 2016, 251, 109-118.	0.4	92
24	Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression. Journal of Biological Chemistry, 2016, 291, 6232-6244.	1.6	34
25	Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. Journal of Clinical Investigation, 2016, 126, 1323-1336.	3.9	196
26	Abstract 647: Induction of Cardiovascular Calcification in Non-transgenic Mice via a Single Injection of Pcsk9 Adeno-associated Viral Vector. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
27	Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 23464-23477.	1.6	56
28	A Not-So-Little Role for Lipoprotein(a) in the Development of Calcific Aortic Valve Disease. Circulation, 2015, 132, 621-623.	1.6	17
29	Revisiting cardiovascular calcification: A multifaceted disease requiring a multidisciplinary approach. Seminars in Cell and Developmental Biology, 2015, 46, 68-77.	2.3	37
30	Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 102-107.	1.2	123
31	Modifying Vascular Calcification in Diabetes Mellitus. Circulation Research, 2014, 114, 1074-1076.	2.0	13
32	Abstract 16983: Inhibition of Dynamin-Related Protein 1 Accelerates Vascular Calcification in apoE-Deficient Mice through AKT Activation. Circulation, 2014, 130, .	1.6	0
33	Medial and Intimal Calcification in Chronic Kidney Disease: Stressing the Contributions. Journal of the American Heart Association, 2013, 2, e000481.	1.6	26
34	A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Human Molecular Genetics, 2012, 21, 730-750.	1.4	111
35	Cellular Pregnenolone Esterification by Acyl-CoA:Cholesterol Acyltransferase. Journal of Biological Chemistry, 2012, 287, 17483-17492.	1.6	22
36	Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life, 2010, 62, 261-267.	1.5	12

#	Article	IF	CITATIONS
37	ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3081-3086.	3.3	170