Daniel A Rappolee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Live Imaging and Fluorescence Ubiquitinated Cell Cycle Indicator Embryonic Stem Cells to Distinguish G1 Cell Cycle Delays for General Stressors like Perfluoro-Octanoic Acid and Hyperosmotic Sorbitol or G2 Cell Cycle Delay for Mutagenic Stressors like Benzo(a)pyrene. Stem Cells and Development, 2022, 31, 296-310.	2.1	3
2	Nature or nurture or both? Potential use of both DNA copy number and epigenetics in assessing the human blastocyst. Fertility and Sterility, 2021, 115, 1441-1442.	1.0	0
3	Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Reviews and Reports, 2021, 17, 2164-2177.	3.8	8
4	Using Live Imaging and FUCCI Embryonic Stem Cells to Rank DevTox Risks: Adverse Growth Effects of PFOA Compared With DEP Are 26 Times Faster, 1,000 Times More Sensitive, and 13 Times Greater in Magnitude. Frontiers in Toxicology, 2021, 3, 709747.	3.1	4
5	Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Frontiers in Genetics, 2020, 11, 405.	2.3	102
6	Stress Forces First Lineage Differentiation of Mouse Embryonic Stem Cells; Validation of a High-Throughput Screen for Toxicant Stress. Stem Cells and Development, 2019, 28, 101-113.	2.1	15
7	Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development. Stem Cells and Development, 2018, 27, 1230-1236.	2.1	23
8	Why AMPK agonists not known to be stressors may surprisingly contribute to miscarriage or hinder IVF/ART. Journal of Assisted Reproduction and Genetics, 2018, 35, 1359-1366.	2.5	9
9	Two-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and stemness by commonly used fertility drugs, a diet supplement, and stress. Journal of Assisted Reproduction and Genetics, 2017, 34, 1609-1617.	2.5	9
10	CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. Journal of Assisted Reproduction and Genetics, 2017, 34, 1595-1607.	2.5	36
11	Hypoxic Stress Forces Adaptive and Maladaptive Placental Stress Responses in Early Pregnancy. Birth Defects Research, 2017, 109, 1330-1344.	1.5	14
12	Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. Journal of Assisted Reproduction and Genetics, 2017, 34, 1251-1259.	2.5	10
13	Departure from optimal O ₂ level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. Journal of Reproduction and Development, 2017, 63, 87-94.	1.4	12
14	Direct reprogramming to multipotent trophoblast stem cells, and is pluripotency needed for regenerative medicine either?. Stem Cell Investigation, 2016, 3, 24-24.	3.0	1
15	Hypoxic Stress Forces Irreversible Differentiation of a Majority of Mouse Trophoblast Stem Cells Despite FGF4. Biology of Reproduction, 2016, 95, 110-110.	2.7	21
16	Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. Journal of Assisted Reproduction and Genetics, 2016, 33, 1027-1039.	2.5	14
17	Comparison of 2, 5, and 20Â% O2 on the development of post-thaw human embryos. Journal of Assisted Reproduction and Genetics, 2016, 33, 919-927.	2.5	24
18	High-Throughput Screens for Embryonic Stem Cells: Stress-Forced Potency-Stemness Loss Enables Toxicological Assays. Methods in Pharmacology and Toxicology, 2016, , 279-312.	0.2	8

DANIEL A RAPPOLEE

#	Article	IF	CITATIONS
19	Development and Validation of a Rex1-RFP Potency Activity Reporter Assay That Quantifies Stress-Forced Potency Loss in Mouse Embryonic Stem Cells. Stem Cells and Development, 2016, 25, 320-328.	2.1	14
20	Molecular Biology of the Stress Response in the Early Embryo and its Stem Cells. Advances in Experimental Medicine and Biology, 2015, 843, 77-128.	1.6	70
21	Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Research, 2014, 13, 478-491.	0.7	42
22	Stress-Induced Enzyme Activation Primes Murine Embryonic Stem Cells to Differentiate Toward the First Extraembryonic Lineage. Stem Cells and Development, 2014, 23, 3049-3064.	2.1	22
23	Stress Induces AMPK-Dependent Loss of Potency Factors Id2 and Cdx2 in Early Embryos and Stem Cells. Stem Cells and Development, 2013, 22, 1564-1575.	2.1	32
24	Adaptive and Pathogenic Responses to Stress by Stem Cells during Development. Cells, 2012, 1, 1197-1224.	4.1	14
25	Toxic stress prioritizes and imbalances stem cell differentiation: implications for new biomarkers and <i>in vitro</i> toxicology tests. Systems Biology in Reproductive Medicine, 2012, 58, 33-40.	2.1	19
26	Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stressâ€activated protein kinaseâ€dependent manner. Molecular Reproduction and Development, 2011, 78, 519-528.	2.0	26
27	Benzopyrene and Experimental Stressors Cause Compensatory Differentiation in Placental Trophoblast Stem Cells. Systems Biology in Reproductive Medicine, 2010, 56, 168-183.	2.1	34
28	A Major Effect of Simulated Microgravity on Several Stages of Preimplantation Mouse Development is Lethality Associated With Elevated Phosphorylated SAPK/JNK. Reproductive Sciences, 2009, 16, 947-959.	2.5	23
29	Cell Signaling. , 2009, , 89-104.		1
30	Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos. Molecular Human Reproduction, 2007, 13, 473-481.	2.8	53
31	Impact of transient stress and stress enzymes on development. Developmental Biology, 2007, 304, 1-8.	2.0	27
32	Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Molecular Reproduction and Development, 2007, 74, 1287-1294.	2.0	92
33	Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells. Molecular Reproduction and Development, 2005, 71, 1-11.	2.0	21
34	Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertility and Sterility, 2005, 83, 1144-1154.	1.0	70
35	Acquisition of essential somatic cell cycle regulatory protein expression and implied activity occurs at the second to third cell division in mouse preimplantation embryos. FEBS Letters, 2005, 579, 398-408.	2.8	21
36	Serine-threonine kinases and transcription factors active in signal transduction are detected at high levels of phosphorylation during mitosis in preimplantation embryos and trophoblast stem cells. Reproduction, 2004, 128, 643-654.	2.6	19

DANIEL A RAPPOLEE

#	Article	IF	CITATIONS
37	Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Developmental Dynamics, 2004, 231, 72-87.	1.8	71
38	SAPKγ/JNK1 and SAPKα/JNK2 mRNA transcripts are expressed in early gestation human placenta and mouse eggs, preimplantation embryos, and trophoblast stem cells. Fertility and Sterility, 2004, 82, 1140-1148.	1.0	17
39	It's not just baby's babble/Babel: Recent progress in understanding the language of early mammalian development: A minireview. Molecular Reproduction and Development, 1999, 52, 234-240.	2.0	28
40	Insulin receptor substrate-1 is expressed at high levels in all cells of the peri-implantation mouse embryo. Molecular Reproduction and Development, 1998, 49, 386-393.	2.0	14
41	Expression of fibroblast growth factor receptors in peri-implantation mouse embryos. Molecular Reproduction and Development, 1998, 51, 254-264.	2.0	44
42	FGF Is an Essential Regulator of the Fifth Cell Division in Preimplantation Mouse Embryos. Developmental Biology, 1998, 198, 105-115.	2.0	108
43	Expression of fibroblast growth factor receptors in peri-implantation mouse embryos. , 1998, 51, 254.		1
44	FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Developmental Biology, 1998, 198, 105-115.	2.0	15
45	Hepatocyte Growth Factor and Its Receptor Are Expressed in Cardiac Myocytes During Early Cardiogenesis. Circulation Research, 1996, 78, 1028-1036.	4.5	62
46	Expression of SRY transcripts in preimplantation human embryos. American Journal of Medical Genetics Part A, 1995, 55, 80-84.	2.4	67
47	Novel method for studying mRNA phenotypes in single or small numbers of cells. Journal of Cellular Biochemistry, 1989, 39, 1-11.	2.6	373