
Tanja Waldmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test. Chemical Research in Toxicology, 2022, , .	3.3	4
2	Bacterial Growth Inhibition Screen (BGIS) identifies a lossâ€ofâ€function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Letters, 2021, 595, 1438-1453.	2.8	4
3	A human stem cell-derived test system for agents modifying neuronal N-methyl-d-aspartate-type glutamate receptor Ca2+-signalling. Archives of Toxicology, 2021, 95, 1703-1722.	4.2	11
4	Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances. Archives of Toxicology, 2020, 94, 151-171.	4.2	32
5	Establishment of an a priori protocol for the implementation and interpretation of an inâ€vitro testing battery for the assessment of developmental neurotoxicity. EFSA Supporting Publications, 2020, 17, 1938E.	0.7	36
6	Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation. Nucleic Acids Research, 2020, 48, 12577-12592.	14.5	13
7	The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Archives of Toxicology, 2020, 94, 2435-2461.	4.2	30
8	Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicology and Applied Pharmacology, 2018, 354, 64-80.	2.8	29
9	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	1.5	121
10	Major changes of cell function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural genetic drift. Archives of Toxicology, 2018, 92, 3487-3503.	4.2	27
11	Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Archives of Toxicology, 2017, 91, 839-864.	4.2	53
12	Impairment of human neural crest cell migration by prolonged exposure to interferon-beta. Archives of Toxicology, 2017, 91, 3385-3402.	4.2	12
13	Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chemical Research in Toxicology, 2017, 30, 905-922.	3.3	37
14	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	4.2	282
15	Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants. Stem Cells Translational Medicine, 2016, 5, 476-487.	3.3	69
16	Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 190.	5.5	34
17	Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Archives of Toxicology, 2016, 90, 159-180.	4.2	43
18	Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation. Journal of Visualized Experiments, 2015, , e52333.	0.3	39

Tanja Waldmann

#	Article	IF	CITATIONS
19	Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. NeuroToxicology, 2015, 50, 56-70.	3.0	23
20	A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Archives of Toxicology, 2015, 89, 1599-1618.	4.2	82
21	Toxicogenomics directory of chemically exposed human hepatocytes. Archives of Toxicology, 2014, 88, 2261-2287.	4.2	143
22	Design Principles of Concentration-Dependent Transcriptome Deviations in Drug-Exposed Differentiating Stem Cells. Chemical Research in Toxicology, 2014, 27, 408-420.	3.3	103
23	From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Archives of Toxicology, 2014, 88, 1451-1468.	4.2	67
24	Application of "Omics―Technologies to In Vitro Toxicology. Methods in Pharmacology and Toxicology, 2014, , 399-432.	0.2	2
25	Lineage-Specific Regulation of Epigenetic Modifier Genes in Human Liver and Brain. PLoS ONE, 2014, 9, e102035.	2.5	32
26	Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Archives of Toxicology, 2013, 87, 123-143.	4.2	222
27	Targeting histone modifications—epigenetics in cancer. Current Opinion in Cell Biology, 2013, 25, 184-189.	5.4	138
28	90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology, 2013, 10, 111.	2.0	43
29	Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Human Molecular Genetics, 2012, 21, 4104-4114.	2.9	88
30	Extensive Transcriptional Regulation of Chromatin Modifiers during Human Neurodevelopment. PLoS ONE, 2012, 7, e36708.	2.5	23
31	Rapid, complete and largeâ€scale generation of postâ€mitotic neurons from the human LUHMES cell line. Journal of Neurochemistry, 2011, 119, 957-971.	3.9	261
32	Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics and Chromatin, 2011, 4, 11.	3.9	74
33	The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes and Development, 2011, 25, 673-678.	5.9	82
34	Arginine methylation of the B cell antigen receptor promotes differentiation. Journal of Experimental Medicine, 2010, 207, 711-719.	8.5	63
35	Histone H2A C-Terminus Regulates Chromatin Dynamics, Remodeling, and Histone H1 Binding. PLoS Genetics, 2010, 6, e1001234.	3.5	73
36	Arginine methylation of the B cell antigen receptor promotes differentiation. Journal of Cell Biology, 2010, 188, i13-i13.	5.2	0

Tanja Waldmann

#	Article	IF	CITATIONS
37	Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX: Alternatives To Animal Experimentation, 2010, 27, 17-42.	1.5	83
38	Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 2008, 452, 877-881.	27.8	611
39	The SAF-box domain of chromatin protein DEK. Nucleic Acids Research, 2005, 33, 1101-1110.	14.5	37
40	HP1 Binds Specifically to Lys26-methylated Histone H1.4, whereas Simultaneous Ser27 Phosphorylation Blocks HP1 Binding*. Journal of Biological Chemistry, 2005, 280, 38090-38095.	3.4	200
41	Functional Domains of the Ubiquitous Chromatin Protein DEK. Molecular and Cellular Biology, 2004, 24, 6000-6010.	2.3	76
42	The DEK protein—an abundant and ubiquitous constituent of mammalian chromatin. Gene, 2004, 343, 1-9.	2.2	105
43	Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Research, 2003, 31, 7003-7010.	14.5	72
44	The Ubiquitous Chromatin Protein DEK Alters the Structure of DNA by Introducing Positive Supercoils. Journal of Biological Chemistry, 2002, 277, 24988-24994.	3.4	86
45	The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes and Development, 2000, 14, 1308-1312.	5.9	118