Xudong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sâ€Doped Nâ€Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1604108.	21.0	566
2	Atomic Interface Engineering and Electricâ€Field Effect in Ultrathin Bi ₂ MoO ₆ Nanosheets for Superior Lithium Ion Storage. Advanced Materials, 2017, 29, 1700396.	21.0	343
3	A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 2016, 4, 4871-4876.	10.3	242
4	Sandwichâ€Like Heterostructures of MoS ₂ /Graphene with Enlarged Interlayer Spacing and Enhanced Hydrophilicity as Highâ€Performance Cathodes for Aqueous Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2007480.	21.0	241
5	Ti ₂ CO ₂ MXene: a highly active and selective photocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 12899-12903.	10.3	221
6	Computational Screening of 2D Materials and Rational Design of Heterojunctions for Water Splitting Photocatalysts. Small Methods, 2018, 2, 1700359.	8.6	151
7	A Novel NASICONâ€Type Na ₄ MnCr(PO ₄) ₃ Demonstrating the Energy Density Record of Phosphate Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1906348.	21.0	142
8	Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 2015, 3, 4960-4966.	10.3	141
9	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€ion Storage. Angewandte Chemie - International Edition, 2021, 60, 20286-20293.	13.8	141
10	Two Birds with One Stone: Metal–Organic Framework Derived Microâ€∤Nanostructured Ni ₂ P/Ni Hybrids Embedded in Porous Carbon for Electrocatalysis and Energy Storage. Advanced Functional Materials, 2019, 29, 1901510.	14.9	140
11	Hierarchical Engineering of Porous P2â€Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Nanofibers Assembled by Nanoparticles Enables Superior Sodiumâ€Ion Storage Cathodes. Advanced Functional Materials, 2020, 30, 1907837.	14.9	117
12	Regulating Uniform Li Plating/Stripping via Dualâ€Conductive Metalâ€Organic Frameworks for Highâ€Rate Lithium Metal Batteries. Advanced Functional Materials, 2020, 30, 2000786.	14.9	114
13	Prelithiated V ₂ C MXene: A Highâ€Performance Electrode for Hybrid Magnesium/Lithiumâ€lon Batteries by Ion Cointercalation. Small, 2020, 16, e1906076.	10.0	105
14	Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. Journal of Materials Chemistry A, 2019, 7, 16712-16719.	10.3	81
15	An effective method to screen sodium-based layered materials for sodium ion batteries. Npj Computational Materials, 2018, 4, .	8.7	77
16	A three-dimensional interconnected V ₆ O ₁₃ nest with a V ⁵⁺ -rich state for ultrahigh Zn ion storage. Journal of Materials Chemistry A, 2020, 8, 10370-10376.	10.3	77
17	Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. International Journal of Hydrogen Energy, 2014, 39, 5037-5042.	7.1	76
18	Unexpected Role of the Interlayer "Dead Zn ²⁺ ―in Strengthening the Nanostructures of VS ₂ Cathodes for Highâ€Performance Aqueous Znâ€Ion Storage. Advanced Energy Materials, 2022, 12, .	19.5	74

XUDONG ZHAO

#	Article	IF	CITATIONS
19	Ab initio investigations on bulk and monolayer V ₂ O ₅ as cathode materials for Li-, Na-, K- and Mg-ion batteries. Journal of Materials Chemistry A, 2016, 4, 16606-16611.	10.3	70
20	Molecular Engineering on MoS ₂ Enables Large Interlayers and Unlocked Basal Planes for Highâ€Performance Aqueous Znâ€ion Storage. Angewandte Chemie, 2021, 133, 20448-20455.	2.0	52
21	Transitionâ€Metal Vacancy Manufacturing and Sodiumâ€Site Doping Enable a Highâ€Performance Layered Oxide Cathode through Cationic and Anionic Redox Chemistry. Advanced Functional Materials, 2021, 31, 2106923.	14.9	50
22	High Carrier Mobility and Pronounced Light Absorption in Methyl-Terminated Germanene: Insights from First-Principles Computations. Journal of Physical Chemistry Letters, 2015, 6, 4252-4258.	4.6	47
23	Computational screening and first-principles investigations of NASICON-type Li _x M ₂ (PO ₄) ₃ as solid electrolytes for Li batteries. Journal of Materials Chemistry A, 2018, 6, 2625-2631.	10.3	46
24	Tetragonal-structured anisotropic 2D metal nitride monolayers and their halides with versatile promises in energy storage and conversion. Journal of Materials Chemistry A, 2017, 5, 2870-2875.	10.3	42
25	First-principles computational studies on layered Na ₂ Mn ₃ O ₇ as a high-rate cathode material for sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 12752-12756.	10.3	39
26	Cu3P@Ni core-shell heterostructure with modulated electronic structure for highly efficient hydrogen evolution. Nano Research, 2022, 15, 2935-2942.	10.4	35
27	Single-Crystal α-Fe ₂ O ₃ with Engineered Exposed (001) Facet for High-Rate, Long-Cycle-Life Lithium-Ion Battery Anode. Inorganic Chemistry, 2019, 58, 12724-12732.	4.0	34
28	Unveiling the Complementary Manganese and Oxygen Redox Chemistry for Stabilizing the Sodiumâ€lon Storage Behaviors of Layered Oxide Cathodes. Advanced Functional Materials, 2022, 32, .	14.9	34
29	Computational Screening of Layered Materials for Multivalent Ion Batteries. ACS Omega, 2019, 4, 7822-7828.	3.5	33
30	Cu ₃ P@CoO core–shell heterostructure with synergistic effect for highly efficient hydrogen evolution. Nanoscale, 2021, 13, 19430-19437.	5.6	31
31	Computational study of catalytic effect of C3N4 on H2 release from complex hydrides. International Journal of Hydrogen Energy, 2015, 40, 8897-8902.	7.1	13
32	K-Ion intercalated V ₆ O ₁₃ with advanced high-rate long-cycle performance as cathode for Zn-ion batteries. Journal of Materials Chemistry C, 2022, 10, 590-597.	5.5	11
33	Boosting oxygen evolution reaction activity by tailoring MOF-derived hierarchical Co–Ni alloy nanoparticles encapsulated in nitrogen-doped carbon frameworks. RSC Advances, 2021, 11, 10874-10880.	3.6	9
34	Achieving the robust immobilization of CoP nanoparticles in cellulose nanofiber network-derived carbon <i>via</i> chemical bonding for a stable potassium ion storage. RSC Advances, 2020, 10, 44611-44623.	3.6	6
35	Batteries: Prelithiated V ₂ C MXene: A Highâ€Performance Electrode for Hybrid Magnesium/Lithiumâ€lon Batteries by Ion Cointercalation (Small 8/2020). Small, 2020, 16, 2070043.	10.0	3
36	Water Splitting: Computational Screening of 2D Materials and Rational Design of Heterojunctions for Water Splitting Photocatalysts (Small Methods 5/2018). Small Methods, 2018, 2, 1800031.	8.6	1