
Yoshiyuki Inagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrate is an important nitrogen source for Arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3398-3403.	3.3	102
2	Effects of freeze–thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biology and Biochemistry, 2014, 74, 82-94.	4.2	87
3	Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 2016, 361, 382-396.	1.4	71
4	Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikoku district, southern Japan. Forest Ecology and Management, 2004, 202, 107-117.	1.4	63
5	Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types. Soil Science and Plant Nutrition, 2007, 53, 678-691.	0.8	53
6	Effects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher) plantation stands in Japan. Forest Ecology and Management, 2008, 255, 1859-1867.	1.4	50
7	Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia, 2014, 174, 679-687.	0.9	50
8	The effect of a freeze–thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest. Biogeochemistry, 2019, 142, 319-338.	1.7	50
9	Biogeochemical nitrogen properties of forest soils in the Japanese archipelago. Ecological Research, 2015, 30, 1-2.	0.7	44
10	Gross nitrification rates in four Japanese forest soils: heterotrophic versus autotrophic and the regulation factors for the nitrification. Journal of Forest Research, 2011, 16, 363-373.	0.7	43
11	Changes in nitrogen transformation in forest soil representing the climate gradient of the Japanese archipelago. Journal of Forest Research, 2011, 16, 374-385.	0.7	32
12	Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant and Soil, 2020, 446, 425-439.	1.8	28
13	Reproduction-related variation in carbon allocation to woody tissues in <i>Fagus crenata</i> using a natural ¹³ C approach. Tree Physiology, 2016, 36, 1343-1352.	1.4	23
14	Fine-root production in response to nutrient application at three forest plantations in Sabah, Malaysia: higher nitrogen and phosphorus demand by <i>Acacia mangium</i> . Journal of Forest Research, 2009, 14, 178-182.	0.7	22
15	Volcanic ash additions control soil carbon accumulation in brown forest soils in Japan. Soil Science and Plant Nutrition, 2010, 56, 734-744.	0.8	22
16	General Chemical Properties of Brown Forest Soils Developed from Different Parent Materials in the Submontane Zone of the Kanto and Chubu Districts, Japan. Soil Science and Plant Nutrition, 2005, 51, 873-884.	0.8	20
17	Free oxides and short-range ordered mineral properties of brown forest soils developed from different parent materials in the submontane zone of the Kanto and Chubu districts, Japan. Soil Science and Plant Nutrition, 2007, 53, 621-633.	0.8	20
18	Influence of reproduction on nitrogen uptake and allocation to new organs in Fagus crenata. Tree Physiology, 2017, 37, 1436-1443.	1.4	19

Υοςηιγικι Ινασακι

#	Article	IF	CITATIONS
19	Within- and between-site variations in leaf longevity in hinoki cypress (<i>Chamaecyparis obtusa</i>) plantations in southwestern Japan. Journal of Forest Research, 2013, 18, 256-269.	0.7	18
20	Sorption reduces the biodegradation rates of multivalent organic acids in volcanic soils rich in short-range order minerals. Geoderma, 2019, 333, 188-199.	2.3	16
21	Impacts of conversion from natural forest to cedar plantation on the structure and diversity of root-associated and soil microbial communities. Applied Soil Ecology, 2021, 167, 104027.	2.1	16
22	Differential utilization of root-derived carbon among collembolan species. Pedobiologia, 2016, 59, 225-227.	0.5	15
23	Priming effects induced by C and N additions in relation to microbial biomass turnover in Japanese forest soils. Applied Soil Ecology, 2021, 162, 103884.	2.1	14
24	Microbial Immobilization and Plant Uptake of Different N Forms in Three Forest Types in Shikoku District, Southern Japan. Soil Science and Plant Nutrition, 2005, 51, 667-670.	0.8	13
25	Soil properties and nitrogen utilization of hinoki cypress as affected by strong thinning under different climatic conditions in the Shikoku and Kinki districts in Japan. Journal of Forest Research, 2011, 16, 405-413.	0.7	11
26	Leafâ€litter nitrogen concentration in hinoki cypress forests in relation to the time of leaf fall under different climatic conditions in Japan. Ecological Research, 2010, 25, 429-438.	0.7	10
27	Proposal for advanced classification of brown forest soils in Japan with reference to the degree of volcanic ash additions. Soil Science and Plant Nutrition, 2010, 56, 454-465.	0.8	10
28	Growth rate reduction causes a decline in the annual incremental trunk growth in masting Fagus crenata trees. Tree Physiology, 2017, 37, 1444-1452.	1.4	10
29	Soil NO ₃ -N production and immobilization affected by NH ₄ -N, glycine, and NO ₃ -N addition in different forest types in Shikoku, southern Japan. Soil Science and Plant Nutrition, 2002, 48, 679-684.	0.8	8
30	Interâ€annual variations of leafâ€fall phenology and leafâ€litter nitrogen concentration in a hinoki cypress (<i>Chamaecyparis obtusa</i> Endlicher) stand. Ecological Research, 2008, 23, 965-972.	0.7	8
31	Effects of patch cutting on leaf nitrogen nutrition in hinoki cypress (<i>Chamaecyparis obtusa</i>) Tj ETQq1 1 C).784314 0.7	rgBŢ /Overlack
32	Composition, size structure and local variation of naturally regenerated broadleaved tree species in hinoki cypress plantations: a case study in Shikoku, south-western Japan. Forestry, 2011, 84, 493-504.	1.2	7
33	A simple method for leaf and branch biomass estimation in Japanese cedar plantations. Trees - Structure and Function, 2020, 34, 349-356.	0.9	7
34	Effects of soil compaction by a forestry machine and slash dispersal on soil N mineralization in Cryptomeria japonica plantations under high precipitation. New Forests, 2020, 51, 887-907.	0.7	7
35	A comparison of lignin-degrading enzyme activities in forest floor layers across a global climatic gradient. Soil Ecology Letters, 2020, 2, 281-294.	2.4	7
36	Nitrogen source utilization in co-existing canopy tree and dwarf bamboo in a northern hardwood forest in Japan. Trees - Structure and Function, 2020, 34, 1047-1057.	0.9	6

Υοςηιγικι Ινασακι

#	Article	IF	CITATIONS
37	Substrate-induced respiration responses to nitrogen and/or phosphorus additions in soils from different climatic and land use conditions. European Journal of Soil Biology, 2017, 83, 27-33.	1.4	4
38	Litter decomposition and soil organic carbon stabilization in a Kastanozem of Saskatchewan, Canada. Geoderma Regional, 2020, 23, e00348.	0.9	4
39	A quantitative evaluation of soil mass held by tree roots. Trees - Structure and Function, 2021, 35, 527-541.	0.9	4
40	Estimation of field soil nitrogen mineralization and nitrification rates using soil N transformation parameters obtained through laboratory incubation. Ecological Research, 2017, 32, 279-285.	0.7	3
41	Continuous maize cropping accelerates loss of soil organic matter in northern Thailand as revealed by natural 13C abundance. Plant and Soil, 2022, 474, 251-262.	1.8	3
42	Stem productivity in relation to nitrogen concentration and carbon isotopic composition (δ13C) in leaves of hinoki cypress (Chamaecyparis obtusa Endlicher) plantations in Shikoku district, Japan. Soil Science and Plant Nutrition, 2011, 57, 710-718.	0.8	2
43	Effects of sugarcane substrate inputs on microbial biomass and nitrogen availability in tropical sandy soils of northeast Thailand. Soil Science and Plant Nutrition, 2021, 67, 130-138.	0.8	2
44	Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.	1.7	2
45	Spatial distribution of mercury accumulation in the surface soil of Japanese forests. Journal of Forest Research, 2021, 26, 161-167.	0.7	2
46	Soil nitrogen dynamics of forest ecosystems under environmental changes. Journal of Forest Research, 2011, 16, 331-332.	0.7	1
47	Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method. Tree Physiology, 2017, 37, 697-705.	1.4	1
48	Reproduction affects partitioning between new organs of a pulse of 15N applied during seed ripening in Fagus crenata. New Forests, 2020, 51, 739-752.	0.7	1
49	Age-Related Changes in Water and Nitrogen Utilization in Crop Trees and Understory Vegetation in a Hinoki Cypress Plantation Forest in Kochi City, Southern Japan. Nitrogen, 2022, 3, 247-259.	0.6	1