List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2048020/publications.pdf Version: 2024-02-01

ADI COFENI

#	Article	IF	CITATIONS
1	Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 2014, 20, 954-960.	30.7	451
2	Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet, The, 2019, 394, 1352-1363.	13.7	433
3	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
4	Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain, 2010, 133, 1591-1601.	7.6	392
5	Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet, The, 2017, 390, 2481-2489.	13.7	377
6	Systematic integration of biomedical knowledge prioritizes drugs for repurposing. ELife, 2017, 6, .	6.0	333
7	The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology, 2016, 86, 2303-2309.	1.1	331
8	Longâ€ŧerm evolution of multiple sclerosis disability in the treatment era. Annals of Neurology, 2016, 80, 499-510.	5.3	331
9	Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain, 2012, 135, 1786-1793.	7.6	300
10	Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurology, The, 2012, 11, 963-972.	10.2	267
11	Silent progression in disease activity–free relapsing multiple sclerosis. Annals of Neurology, 2019, 85, 653-666.	5.3	265
12	Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. ELife, 2016, 5, .	6.0	210
13	Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nature Reviews Neurology, 2022, 18, 158-172.	10.1	205
14	Rituximab before and during pregnancy. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e453.	6.0	159
15	The Spectrum of Neurologic Disease in the Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic Infection. JAMA Neurology, 2020, 77, 679.	9.0	152
16	Infliximab for the treatment of CNS sarcoidosis. Neurology, 2017, 89, 2092-2100.	1.1	151
17	Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Science Translational Medicine, 2017, 9, .	12.4	147
18	Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature Immunology, 2020, 21, 513-524.	14.5	118

#	Article	IF	CITATIONS
19	Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. Journal of Neurology, 2016, 263, 1323-1331.	3.6	112
20	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
21	Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Experimental Medicine, 2014, 211, 1937-1945.	8.5	94
22	ldentification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination. Journal of Neuroscience, 2016, 36, 7925-7935.	3.6	90
23	Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurology, 2015, 72, 897.	9.0	78
24	Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. ELife, 2018, 7, .	6.0	71
25	Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis. JAMA Network Open, 2019, 2, e190570.	5.9	69
26	Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14781-14786.	7.1	59
27	Reduced contrast sensitivity among older women is associated with increased risk of cognitive impairment. Annals of Neurology, 2018, 83, 730-738.	5.3	52
28	Toward a low-cost, in-home, telemedicine-enabled assessment of disability in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1526-1534.	3.0	49
29	Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen Receptors. Journal of Neuroscience, 2019, 39, 2184-2194.	3.6	49
30	Prion Seeds Distribute throughout the Eyes of Sporadic Creutzfeldt-Jakob Disease Patients. MBio, 2018, 9, .	4.1	48
31	Remyelinating Pharmacotherapies in Multiple Sclerosis. Neurotherapeutics, 2017, 14, 894-904.	4.4	46
32	Retinal thinning is uniquely associated with medial temporal lobe atrophy in neurologically normal older adults. Neurobiology of Aging, 2017, 51, 141-147.	3.1	44
33	Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Annals of Neurology, 2022, 91, 268-281.	5.3	39
34	Optical coherence tomography in multiple sclerosis: A 3â€year prospective multicenter study. Annals of Clinical and Translational Neurology, 2021, 8, 2235-2251.	3.7	36
35	Clinic to in-home telemedicine reduces barriers to care for patients with MS or other neuroimmunologic conditions. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e505.	6.0	35
36	A randomized controlled phase II trial of riluzole in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2014, 1, 340-347.	3.7	33

#	Article	IF	CITATIONS
37	Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
38	Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain, 2019, 142, 2722-2736.	7.6	30
39	Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain, 2020, 143, 1127-1142.	7.6	29
40	Neurologic Complications of Common Variable Immunodeficiency. Journal of Clinical Immunology, 2016, 36, 793-800.	3.8	28
41	Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2019, 16, 203.	7.2	28
42	Magnetic resonance imaging correlates of clinical outcomes in early multiple sclerosis. Multiple Sclerosis and Related Disorders, 2014, 3, 720-727.	2.0	26
43	Encephalitis of Unclear Origin Diagnosed by Brain Biopsy. JAMA Neurology, 2015, 72, 66.	9.0	26
44	Harnessing electronic medical records to advance research on multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 408-418.	3.0	21
45	Sex differences and subclinical retinal injury in pediatric-onset MS. Multiple Sclerosis Journal, 2017, 23, 447-455.	3.0	19
46	Validating visual evoked potentials as a preclinical, quantitative biomarker for remyelination efficacy. Brain, 2022, 145, 3943-3952.	7.6	19
47	Relation of quantitative visual and neurologic outcomes to fatigue in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2015, 4, 304-310.	2.0	18
48	pRNFL as a marker of disability worsening in the medium/long term in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e533.	6.0	18
49	Fixational microsaccades: A quantitative and objective measure of disability in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 343-353.	3.0	16
50	AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders, 2022, 57, 103356.	2.0	16
51	Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. American Journal of Neuroradiology, 2020, 41, 2219-2226.	2.4	14
52	Retinal <scp>INL</scp> Thickness in Multiple Sclerosis: A Mere Marker of Neurodegeneration?. Annals of Neurology, 2021, 89, 192-193.	5.3	14
53	Distinctive waves of innate immune response in the retina in experimental autoimmune encephalomyelitis. JCI Insight, 2021, 6, .	5.0	14
54	Using Optical Coherence Tomography and Optokinetic Response As Structural and Functional Visual System Readouts in Mice and Rats. Journal of Visualized Experiments, 2019, , .	0.3	13

#	Article	IF	CITATIONS
55	Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 188-195.	1.9	13
56	Retinal architecture and mfERG. Neurology, 2014, 82, 1888-1896.	1.1	12
57	Sensitivity analysis of the primary endpoint from the N-MOmentum study of inebilizumab in NMOSD. Multiple Sclerosis Journal, 2021, 27, 2052-2061.	3.0	11
58	Whole-body positional manipulators for ocular imaging of anaesthetised mice and rats: a do-it-yourself guide. BMJ Open Ophthalmology, 2016, 1, e000008.	1.6	9
59	Suprasellar Germinoma and Late Perioptic Seeding. European Journal of Ophthalmology, 2008, 18, 159-161.	1.3	7
60	Subclinical Saccadic Eye Movement Dysfunction in Pediatric Multiple Sclerosis. Journal of Child Neurology, 2019, 34, 38-43.	1.4	7
61	Transitioning From S1P Receptor Modulators to B Cell–Depleting Therapies in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	7
62	Plasma neurofilament light chain levels suggest neuroaxonal stability following therapeutic remyelination in people with multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 972-977.	1.9	7
63	Color perception impairment following optic neuritis and its association with retinal atrophy. Journal of Neurology, 2019, 266, 1160-1166.	3.6	6
64	T cells targeting neuromyelitis optica autoantigen aquaporin-4 cause paralysis and visual system injury. Journal of Nature and Science, 2017, 3, .	1.1	6
65	Combating the Spread of Ineffective Medical Procedures. JAMA Neurology, 2018, 75, 15.	9.0	5
66	Imaging correlates of visual function in multiple sclerosis. PLoS ONE, 2020, 15, e0235615.	2.5	5
67	A hormonal therapy for menopausal women with MS: A phase Ib/IIa randomized controlled trial. Multiple Sclerosis and Related Disorders, 2022, 61, 103747.	2.0	5
68	Induction of Paralysis and Visual System Injury in Mice by T Cells Specific for Neuromyelitis Optica Autoantigen Aquaporin-4. Journal of Visualized Experiments, 2017, , .	0.3	4
69	Underutilization of physical therapy for symptomatic women with MS during and following pregnancy. Multiple Sclerosis and Related Disorders, 2021, 48, 102703.	2.0	4
70	Characterizing Fixational Eye Motion Variance Over Time as Recorded by the Tracking Scanning Laser Ophthalmoscope. Translational Vision Science and Technology, 2022, 11, 35.	2.2	3
71	Reply to "Interpretation of Longitudinal Changes of the Inner Nuclear Layer in <scp>MS</scp> ― Annals of Neurology, 2022, 92, 156-156.	5.3	3
72	OCT is an alternative to MRI for monitoring MS – Commentary. Multiple Sclerosis Journal, 2018, 24, 705-706.	3.0	2

#	Article	IF	CITATIONS
73	Potential Benefits of Early Aggressive Treatment in Multiple Sclerosis. JAMA Neurology, 2019, 76, 254.	9.0	1
74	Lessons from an unsuccessful therapeutic trial. Lancet Neurology, The, 2019, 18, 808-810.	10.2	0
75	Personalizing medical care for patients with MS. Neurology, 2019, 92, 929-930.	1.1	0
76	Importance of Not MSing Cerebral White Matter Disease in Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2020, 65, 2527-2532.	2.3	0
77	MRI findings in blinded trials should be available to treating physicians – Commentary. Multiple Sclerosis Journal, 2021, 27, 816-817.	3.0	0
78	Vitamin B12 is inversely correlated with latency of multifocal visual evoked potential in healthy older adults. FASEB Journal, 2011, 25, 97.2.	0.5	0
79	Reply to "Spinal Cord Atrophy Is a Preclinical Marker of Progressive <scp>MS</scp> ― Annals of Neurology, 2022, 91, 735-736.	5.3	0
80	Socioeconomic disadvantage in multiple sclerosis: does inequality act on the substrate for disability?. Brain, 2021, 144, 3552-3554.	7.6	0
81	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
82	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
83	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
84	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0