## M Gil-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047703/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Scientific Reports, 2022, 12, 3541.                                                                        | 1.6 | 14        |
| 2  | Response of spinach plants to different doses of two commercial nanofertilizers. Scientia<br>Horticulturae, 2022, 301, 111143.                                                    | 1.7 | 6         |
| 3  | Selecting efficient methodologies for estimation of As and Hg availability in a brownfield.<br>Environmental Pollution, 2021, 270, 116290.                                        | 3.7 | 11        |
| 4  | Iron nanoparticles are efficient at removing mercury from polluted waters. Journal of Cleaner<br>Production, 2021, 315, 128272.                                                   | 4.6 | 16        |
| 5  | Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere, 2020, 238, 124624.                                        | 4.2 | 79        |
| 6  | Effectiveness of nanoscale zero-valent iron for the immobilization of Cu and/or Ni in water and soil samples. Scientific Reports, 2020, 10, 15927.                                | 1.6 | 16        |
| 7  | Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chemical Engineering Journal, 2020, 399, 125809.                                           | 6.6 | 48        |
| 8  | Phytomanagement of Metal(loid) Polluted Soil Using Barley and Wheat Plants. Nanotechnology in the<br>Life Sciences, 2020, , 191-226.                                              | 0.4 | 0         |
| 9  | Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg.<br>Science of the Total Environment, 2019, 675, 165-175.                              | 3.9 | 60        |
| 10 | Comparison of Nanoscale Zero-Valent Iron, Compost, and Phosphate for Pb Immobilization in an Acidic<br>Soil. Water, Air, and Soil Pollution, 2018, 229, 1.                        | 1.1 | 15        |
| 11 | Metal tolerance in barley and wheat cultivars: physiological screening methods and application in phytoremediation. Journal of Soils and Sediments, 2017, 17, 1403-1412.          | 1.5 | 17        |
| 12 | Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Science of the Total Environment, 2017, 584-585, 1324-1332.             | 3.9 | 101       |
| 13 | Viability of a nanoremediation  process in single or multi-metal(loid) contaminated soils. Journal of<br>Hazardous Materials, 2017, 321, 812-819.                                 | 6.5 | 120       |
| 14 | A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere, 2016, 149, 137-145.                                                                              | 4.2 | 111       |
| 15 | Evaluation of the stability of a nanoremediation strategy using barley plants. Journal of<br>Environmental Management, 2016, 165, 150-158.                                        | 3.8 | 41        |
| 16 | ECO-physiological response ofS. vulgaristo CR(VI): Influence of concentration and genotype.<br>International Journal of Phytoremediation, 2016, 18, 567-574.                      | 1.7 | 4         |
| 17 | Residual impact of aged nZVI on heavy metal-polluted soils. Science of the Total Environment, 2015, 535, 79-84.                                                                   | 3.9 | 71        |
| 18 | Response of Two Barley Cultivars to Increasing Concentrations of Cadmium or Chromium in Soil<br>During the Growing Period. Biological Trace Element Research, 2015, 163, 235-243. | 1.9 | 13        |

M GIL-DÃAZ

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles.<br>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental<br>Engineering, 2014, 49, 1361-1369. | 0.9 | 58        |
| 20 | Immobilisation of Pb and Zn in Soils Using Stabilised Zeroâ€valent Iron Nanoparticles: Effects on Soil<br>Properties. Clean - Soil, Air, Water, 2014, 42, 1776-1784.                                                                           | 0.7 | 61        |
| 21 | Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles<br>(nZVI): Physicochemical and Toxicological Analysis of Leachates. Water, Air, and Soil Pollution, 2014,<br>225, 1.                     | 1.1 | 39        |
| 22 | Mercury uptake by Silene vulgaris grown on contaminated spiked soils. Journal of Environmental<br>Management, 2012, 95, S233-S237.                                                                                                             | 3.8 | 48        |
| 23 | Potential Diffusion of Doramectin into a Soil Amended with Female Pig Manure. A Field Experiment.<br>Journal of Agricultural and Food Chemistry, 2011, 59, 10635-10640.                                                                        | 2.4 | 4         |
| 24 | Effect of electron-beam irradiation on cholesterol oxide formation in different ready-to-eat foods.<br>Innovative Food Science and Emerging Technologies, 2011, 12, 519-525.                                                                   | 2.7 | 9         |
| 25 | Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta, 2010, 80, 1899-1906.                                                                                                             | 2.9 | 47        |
| 26 | Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. , 2009, , .                                                                                                                               |     | 0         |
| 27 | Free D-amino acids determination in ready-to-eat cooked ham irradiated with electron-beam by indirect chiral HPLC. Meat Science, 2009, 82, 24-29.                                                                                              | 2.7 | 12        |
| 28 | Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass<br>spectrometry profiles using partial least squares regression analysis. Sensors and Actuators B:<br>Chemical, 2007, 127, 267-276.                     | 4.0 | 55        |
| 29 | Characterization of the volatile fraction of young wines from the Denomination of Origin "Vinos de<br>Madrid―(Spain). Analytica Chimica Acta, 2006, 563, 145-153.                                                                              | 2.6 | 104       |
| 30 | A comparative study of sensor array and GC–MS: application to Madrid wines characterization.<br>Sensors and Actuators B: Chemical, 2004, 102, 299-307.                                                                                         | 4.0 | 54        |