
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047480/publications.pdf Version: 2024-02-01

KADI HÃ1/11RED

#	Article	IF	CITATIONS
1	Biogeography of amphi-adriatic <i>Gentianella crispata</i> (Gentianaceae): a northern refugium and recent trans-adriatic migration. Plant Biosystems, 2022, 156, 754-768.	0.8	5
2	Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12, 77-82.	8.1	12
3	Parallel local adaptation to an alpine environment in <i>Arabidopsis arenosa</i> . Journal of Ecology, 2022, 110, 2448-2461.	1.9	6
4	Do pentaploid hybrids mediate gene flow between tetraploid Senecio disjunctus and hexaploid S. carniolicus s. str. (S. carniolicus aggregate, Asteraceae)?. Alpine Botany, 2021, 131, 151-160.	1.1	11
5	Evidence for Glacial Refugia of the Forest Understorey Species Helleborus niger (Ranunculaceae) in the Southern as Well as in the Northern Limestone Alps. Frontiers in Plant Science, 2021, 12, 683043.	1.7	9
6	An explicit test of Pleistocene survival in peripheral versus nunatak refugia in two high mountain plant species. Molecular Ecology, 2020, 29, 172-183.	2.0	19
7	Occurrence of apomictic conspecifics and ecological preferences rather than colonization history govern the geographic distribution of sexual Potentilla puberula. Ecology and Evolution, 2020, 10, 7306-7319.	0.8	4
8	Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Global Ecology and Conservation, 2020, 23, e01113.	1.0	14
9	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	5.8	52
10	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	5.8	63
11	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	2.1	2
12	Difference in reproductive mode rather than ploidy explains niche differentiation in sympatric sexual and apomictic populations of Potentilla puberula. Ecology and Evolution, 2019, 9, 3588-3598.	0.8	13
13	Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 2019, 28, 533-543.	2.7	75
14	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	2.7	49
15	Three years of vegetation development worth 30Âyears of secondary succession in urbanâ€industrial grassland restoration. Applied Vegetation Science, 2019, 22, 138-149.	0.9	26
16	Functional traits but not environmental gradients explain seed weight in Mongolian plant species. Plant Biology, 2019, 21, 559-562.	1.8	2
17	Natural selection drives parallel divergence in the mountain plant <i>Heliosperma pusillum</i> s.l. Oikos, 2018, 127, 1355-1367.	1.2	22
18	Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1848-1853.	3.3	284

#	Article	IF	CITATIONS
19	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	3.0	32
20	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
21	Pollen precedence in sexual Potentilla puberula and its role as a protective reproductive barrier against apomictic cytotypes. Taxon, 2018, 67, 1132-1142.	0.4	5
22	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
23	Reciprocal transplantations reveal strong niche differentiation among ploidy-differentiated species of the Senecio carniolicus aggregate (Asteraceae) in the easternmost Alps. Alpine Botany, 2018, 128, 107-119.	1.1	4
24	Asymmetric reproductive interference: The consequences of crossâ€pollination on reproductive success in sexual–apomictic populations of <i>Potentilla puberula</i> (Rosaceae). Ecology and Evolution, 2018, 8, 365-381.	0.8	23
25	Plant species richness decreased in semi-natural grasslands in the Biosphere Reserve Wienerwald, Austria, over the past two decades, despite agri-environmental measures. Agriculture, Ecosystems and Environment, 2017, 243, 10-18.	2.5	35
26	A novel method to infer the origin of polyploids from Amplified Fragment Length Polymorphism data reveals that the alpine polyploid complex of <i>Senecio carniolicus</i> (Asteraceae) evolved mainly via autopolyploidy. Molecular Ecology Resources, 2017, 17, 877-892.	2.2	16
27	Habitat-based conservation strategies cannot compensate for climate-change-induced rangeÂloss. Nature Climate Change, 2017, 7, 823-827.	8.1	55
28	Phytosociological and ecological description of the high alpine vegetation of NW Iran. Phytocoenologia, 2017, 47, 233-259.	1.2	3
29	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
30	The rich sides of mountain summits – a pan‣uropean view on aspect preferences of alpine plants. Journal of Biogeography, 2016, 43, 2261-2273.	1.4	107
31	No evidence of intrinsic reproductive isolation between two reciprocally non-monophyletic, ecologically differentiated mountain plants at an early stage of speciation. Evolutionary Ecology, 2016, 30, 1031-1042.	0.5	13
32	Underestimated diversity in one of the world's best studied mountain ranges: The polyploid complex of Senecio carniolicus (Asteraceae) contains four species in the European Alps. Phytotaxa, 2015, 213, 1.	0.1	24
33	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	1.9	32
34	Changes in plant lifeâ€form, pollination syndrome and breeding system at a regional scale promoted by land use intensity. Diversity and Distributions, 2015, 21, 1319-1328.	1.9	10
35	Insect herbivory in alpine grasslands is constrained by community and host traits. Journal of Vegetation Science, 2015, 26, 663-673.	1.1	7
	Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between		

Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of <i>Senecio carniolicus</i> (syn. <i>Jacobaea carniolica</i>,) Tj ETQq0 0 0 rgBT.#Overlo&# 10 Tf 50

#	Article	IF	CITATIONS
37	Ecological differentiation of diploid and polyploid cytotypes ofSenecio carniolicus sensu lato(Asteraceae) is stronger in areas of sympatry. Annals of Botany, 2015, 117, mcv176.	1.4	26
38	A new high-resolution habitat distribution map for Austria, Liechtenstein, southern Germany, South Tyrol and Switzerland. Eco Mont, 2015, 7, 18-29.	0.1	6
39	Space matters when defining effective management for invasive plants. Diversity and Distributions, 2014, 20, 1029-1043.	1.9	30
40	Modelling the <scp>H</scp> olocene migrational dynamics of <i><scp>F</scp>agus sylvatica</i> â€ <scp>L.</scp> and <i><scp>P</scp>icea abies</i> (<scp>L</scp> .) <scp>H</scp> . <scp>K</scp> arst. Global Ecology and Biogeography, 2014, 23, 658-668.	2.7	18
41	Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany, 2014, 23, 113-122.	1.0	30
42	Reproductive differentiation into sexual and apomictic polyploid cytotypes in Potentilla puberula (Potentilleae, Rosaceae). Annals of Botany, 2013, 112, 1159-1168.	1.4	56
43	Morphology, DNA–molecular variation, karyology, ecogeography, and phytosociology suggest allopatric differentiation and species rank for <i>Potentilla rigoana</i> (Rosaceae). Taxon, 2013, 62, 733-745.	0.4	13
44	Prospects and limits of the flow cytometric seed screen – insights from <i>Potentilla sensu lato</i> (Potentilleae, Rosaceae). New Phytologist, 2013, 198, 605-616.	3.5	39
45	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
46	Parental Ploidy Strongly Affects Offspring Fitness in Heteroploid Crosses among Three Cytotypes of Autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE, 2013, 8, e78959.	1.1	42
47	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
48	Germination of Epiphytic Bromeliads in Forests and Coffee Plantations: Microclimate and Substrate Effects. Biotropica, 2012, 44, 197-204.	0.8	19
49	Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (<i>Senecio carniolicus</i> , Asteraceae). Molecular Ecology, 2012, 21, 1255-1270.	2.0	44
50	Effects of snowmelt timing and competition on the performance of alpine snowbed plants. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 15-26.	1.1	38
51	Reply to Keller and Springborn: No doubt about invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E221-E221.	3.3	4
52	Patch configuration affects alpine plant distribution. Ecography, 2011, 34, 576-587.	2.1	21
53	No evidence for a role of competitive capabilities of adults in causing habitat segregation of diploid and hexaploid Senecio carniolicus (Asteracaeae). Alpine Botany, 2011, 121, 123.	1.1	9
54	Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 203-207.	3.3	442

#	Article	IF	CITATIONS
55	Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants. PLoS ONE, 2011, 6, e21537.	1.1	33
56	Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. Journal of Tropical Ecology, 2010, 26, 93-102.	0.5	21
57	Intraseasonal climate and habitatâ€specific variability controls the flowering phenology of high alpine plant species. Functional Ecology, 2010, 24, 245-252.	1.7	95
58	Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Annals of Botany, 2010, 106, 967-977.	1.4	109
59	Population dynamics of epiphytic orchids in a metapopulation context. Annals of Botany, 2009, 104, 995-1004.	1.4	45
60	Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia, 2009, 81, 309-319.	1.1	39
61	Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecology, 2008, 195, 179-196.	0.7	124
62	Longâ€ŧerm impacts of nitrogen and sulphur deposition on forest floor vegetation in the Northern limestone Alps, Austria. Applied Vegetation Science, 2008, 11, 395-404.	0.9	23
63	Mating systems of snowbed plant species of the northeastern Calcareous Alps of Austria. Acta Oecologica, 2007, 31, 203-209.	0.5	10
64	Assessing airborne pollution effects on bryophytes – lessons learned through long-term integrated monitoring in Austria. Environmental Pollution, 2007, 147, 696-705.	3.7	42
65	Population dynamics of epiphytic bromeliads: Life strategies and the role of host branches. Basic and Applied Ecology, 2007, 8, 183-196.	1.2	41
66	Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research, 2007, 120, 721-725.	1.2	69
67	Phenological Responses of Snowbed Species to Snow Removal Dates in the Central Alps: Implications for Climate Warming. Arctic, Antarctic, and Alpine Research, 2006, 38, 99-103.	0.4	84
68	Effect of Canopy Position on Germination and Seedling Survival of Epiphytic Bromeliads in a Mexican Humid Montane Forest. Annals of Botany, 2005, 95, 1039-1047.	1.4	108
69	Gourmets or gourmands?—Diet selection by large ungulates in high-alpine plant communities and possible impacts on plant propagation. Basic and Applied Ecology, 2005, 6, 1-10.	1.2	29
70	Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest. Journal of Tropical Ecology, 2005, 21, 147-154.	0.5	34
71	Semi-Objective Sampling Strategies as One Basis for a Vegetation Survey. Advances in Global Change Research, 2001, , 219-228.	1.6	1