
Keisuke Nagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047172/publications.pdf Version: 2024-02-01

KEISLIKE NACAL

#	Article	IF	CITATIONS
1	The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460, 1026-1030.	27.8	840
2	Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 76-81.	7.1	236
3	Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361, 181-186.	12.6	188
4	Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant, Cell and Environment, 2014, 37, 2313-2324.	5.7	113
5	Rice growth adapting to deepwater. Current Opinion in Plant Biology, 2011, 14, 100-105.	7.1	99
6	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	27.8	98
7	Loss of function at <i>RAE2</i> , a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8969-8974.	7.1	94
8	Stunt or elongate? Two opposite strategies by which rice adapts to floods. Journal of Plant Research, 2010, 123, 303-309.	2.4	86
9	Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (<i><scp>LGF</scp>1</i>) and contribute to flood tolerance. New Phytologist, 2018, 218, 1558-1569.	7.3	68
10	Time-Course Transcriptomics Analysis Reveals Key Responses of Submerged Deepwater Rice to Flooding. Plant Physiology, 2018, 176, 3081-3102.	4.8	64
11	Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Plant and Cell Physiology, 2017, 58, 702-716.	3.1	50
12	Mapping of three QTLs that regulate internode elongation in deepwater rice. Breeding Science, 2008, 58, 39-46.	1.9	45
13	Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breeding Science, 2012, 62, 178-185.	1.9	38
14	Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Science, 2016, 242, 131-139.	3.6	33
15	Convergent Loss of Awn in Two Cultivated Rice Species <i>Oryza sativa</i> and <i>Oryza glaberrima</i> Is Caused by Mutations in Different Loci. G3: Genes, Genomes, Genetics, 2015, 5, 2267-2274.	1.8	31
16	eQTLs Regulating Transcript Variations Associated with Rapid Internode Elongation in Deepwater Rice. Frontiers in Plant Science, 2017, 8, 1753.	3.6	29
17	QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB PLANTS, 2014, 6, plu028-plu028.	2.3	25
18	Development of chromosome segment substitution lines harboring <i>Oryza nivara</i> genomic segments in Koshihikari and evaluation of yield-related traits. Breeding Science, 2016, 66, 845-850.	1.9	18

Keisuke Nagai

#	Article	IF	CITATIONS
19	Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites, 2020, 10, 68.	2.9	17
20	Diel O2 Dynamics in Partially and Completely Submerged Deepwater Rice: Leaf Gas Films Enhance Internodal O2 Status, Influence Gene Expression and Accelerate Stem Elongation for â€~Snorkelling' during Submergence. Plant and Cell Physiology, 2019, 60, 973-985.	3.1	16
21	SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice. Plants, 2022, 11, 376.	3.5	13
22	Noninvasive imaging of hollow structures and gas movement revealed the gas partialâ€pressureâ€gradientâ€driven longâ€distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice. New Phytologist, 2021, 232, 1974-1984.	7.3	10
23	A new outlook on sporadic flowering of bamboo. Plant Signaling and Behavior, 2017, 12, e1343780.	2.4	7
24	Title is missing!. Kagaku To Seibutsu, 2011, 49, 222-224.	0.0	0
25	æµ®ā,Ħf生å-æ^¦ç•¥ā«āŠāʿā,‹ā,,āf™āf¬āfªāf³å¿œç"性å›åē®æŽ¢ç´¢. Kagaku To Seibutsu, 2016, 54, 198-204.	0.0	0
26	Prospects for Breeding and Agriculture 34—Reconsider breeding from the aspect of morphology—. Ikushugaku Kenkyu, 2018, 20, 69-75.	0.3	0