
Rudi Santbergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2047126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles. Nano Letters, 2012, 12, 4070-4076.	9.1	395
2	The absorption factor of crystalline silicon PV cells: A numerical and experimental study. Solar Energy Materials and Solar Cells, 2008, 92, 432-444.	6.2	144
3	Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Optics Express, 2016, 24, A1288.	3.4	124
4	Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors. Solar Energy, 2010, 84, 867-878.	6.1	106
5	GenPro4 Optical Model for Solar Cell Simulation and Its Application to Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 919-926.	2.5	98
6	A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nature Energy, 2021, 6, 529-537.	39.5	87
7	Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 132-138.	6.2	75

 $_8$ Application of plasmonic silver island films in thin-film silicon solar cells. Journal of Optics (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

9	Optical model for multilayer structures with coherent, partly coherent and incoherent layers. Optics Express, 2013, 21, A262.	3.4	69
10	Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells. Energy Procedia, 2017, 124, 635-642.	1.8	60
11	Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. Applied Physics Letters, 2013, 102, .	3.3	58
12	Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality. Applied Energy, 2019, 233-234, 424-442.	10.1	53
13	Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage. Applied Physics Letters, 2014, 105, 063902.	3.3	44
14	Advanced Light Management Approaches for Thin-Film Silicon Solar Cells. Energy Procedia, 2012, 15, 189-199.	1.8	40
15	Innovative floating bifacial photovoltaic solutions for inland water areas. Progress in Photovoltaics: Research and Applications, 2021, 29, 725-743.	8.1	39
16	Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management. Advanced Materials, 2016, 28, 2170-2177.	21.0	36
17	Threeâ€ŧerminal perovskite/integrated back contact silicon tandem solar cells under low light intensity conditions. , 2022, 1, 148-156.		36
18	The AM1.5 absorption factor of thin-film solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 715-723.	6.2	35

RUDI SANTBERGEN

#	Article	IF	CITATIONS
19	Maximizing annual yield of bifacial photovoltaic noise barriers. Solar Energy, 2018, 162, 300-305.	6.1	34
20	A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Applied Energy, 2018, 228, 1454-1472.	10.1	34
21	Optimization of Three-Terminal Perovskite/Silicon Tandem Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 446-451.	2.5	30
22	Plasmonic Nanoparticle Films for Solar Cell Applications Fabricated by Size-selective Aerosol Deposition. Energy Procedia, 2014, 60, 3-12.	1.8	29
23	The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells. Journal of Applied Physics, 2013, 113, .	2.5	26
24	Combined Optical and Electrical Design of Plasmonic Back Reflector for High-Efficiency Thin-Film Silicon Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 53-58.	2.5	25
25	Fabrication of double- and triple-junction solar cells with hydrogenated amorphous silicon oxide (a-SiOx:H) top cell. Solar Energy Materials and Solar Cells, 2015, 141, 148-153.	6.2	25
26	Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells. Optics Express, 2014, 22, A1023.	3.4	24
27	In situ manipulation of the sub gap states in hydrogenated amorphous silicon monitored by advanced application of Fourier transform photocurrent spectroscopy. Solar Energy Materials and Solar Cells, 2014, 129, 70-81.	6.2	24
28	Room-temperature sputtered tungsten-doped indium oxide for improved current in silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2021, 227, 111082.	6.2	23
29	Advanced Light Trapping in Thin-film Silicon Solar Cells. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	21
30	From Geometry to Activity: A Quantitative Analysis of WO ₃ /Si Micropillar Arrays for Photoelectrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 1909157.	14.9	20
31	Solar cells based on n+-AZO/p-BaSi2 heterojunction: Advanced opto-electrical modelling and experimental demonstration. Solar Energy Materials and Solar Cells, 2021, 230, 111181.	6.2	19
32	Towards bifacial silicon heterojunction solar cells with reduced TCO use. Progress in Photovoltaics: Research and Applications, 2022, 30, 750-762.	8.1	19
33	Modeling the thermal absorption factor of photovoltaic/thermal combi-panels. Energy Conversion and Management, 2006, 47, 3572-3581.	9.2	18
34	Effect of Substrate Morphology Slope Distributions on Light Scattering, nc-Si:H Film Growth, and Solar Cell Performance. ACS Applied Materials & Interfaces, 2014, 6, 22061-22068.	8.0	17
35	A-Si:H solar cells with embedded silver nanoparticles. , 2010, , .		15
36	Calculation of irradiance distribution on PV modules by combining sky and sensitivity maps. Solar Energy, 2017, 150, 49-54.	6.1	14

Rudi Santbergen

1

#	Article	IF	CITATIONS
37	Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts. Solar Energy Materials and Solar Cells, 2020, 210, 110507.	6.2	14
38	Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions. Nanophotonics, 2021, 10, 2043-2057.	6.0	12
39	Colored optic filters on câ€5i IBC solar cells for building integrated photovoltaic applications. Progress in Photovoltaics: Research and Applications, 2022, 30, 401-435.	8.1	9
40	Nanocrystal size distribution analysis from transmission electron microscopy images. Nanoscale, 2015, 7, 20593-20606.	5.6	8
41	Ray-optics study of gentle non-conformal texture morphologies for perovskite/silicon tandems. Optics Express, 2022, 30, 5608.	3.4	8
42	Amorphous Silicon Solar Cells With Silver Nanoparticles Embedded Inside the Absorber Layer. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	7
43	Barotropic elliptical dipoles in a rotating fluid. Theoretical and Computational Fluid Dynamics, 2010, 24, 111-115.	2.2	6
44	Optimized back Reflectors for Rear Diffused c-Si Solar Cells. Energy Procedia, 2014, 55, 94-100.	1.8	6
45	Standing waves in fiber-optic interferometers. Applied Optics, 2011, 50, 5674.	2.1	5
46	Modeling of Advanced Light Trapping Approaches in Thin-Film Silicon Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1321, 153.	0.1	4
47	Plasmonic Solar Cells with Embedded Silver Nanoparticles from Vapor Condensation. Materials Research Society Symposia Proceedings, 2012, 1391, 52.	0.1	4
48	Towards Lambertian internal light scattering in solar cells using coupled plasmonic and dielectric nanoparticles as back reflector. , 2013, , .		3
49	Optical Analysis of Poly-Si and Poly-SiOx Carrier-Selective Passivating Contacts for c-Si Solar Cells. , 2017, , .		3
50	Thin-Film Silicon Solar Cells Using Back Reflector with Embedded Metal Nanoparticles. Advances in Science and Technology, 2010, 74, 182-187.	0.2	2
51	Silver nanoparticles for plasmonic light trapping in A-Si:H solar cells. , 2011, , .		1
52	Effective Medium Analysis of Plasmonic Silver Nanoparticle Films. Materials Research Society Symposia Proceedings, 2011, 1322, 33.	0.1	1
53	Responses of simple optical standing wave sensors. Applied Optics, 2012, 51, 3109.	1.8	1

54 Performance Optimization of Semi-Transparent Thin-Film Amorphous Silicon Solar Cells. , 2017, , .

#	Article	IF	CITATIONS
55	Advanced modelling of E/UIPV systems from location to load. , 2018, , .		1
56	Raman spectroscopy on thin film silicon on non-transparent substrates and in solar cell devices. , 2011, , .		0
57	Driving Field Optimization of Plasmonic Back Reflector for Thin-Film Silicon Solar Cells. , 2012, , .		Ο
58	Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells. , 2012, , .		0
59	Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells. , 2013, , .		Ο
60	Photonic and plasmonic structures for applications in solar cells. , 2014, , .		0
61	Mirror Designs for Low-concentration PV Systems with High Efficiency c-Si Solar Cells. , 2017, , .		Ο
62	On current collection from supporting layers in perovskite/c-Si tandem solar cells. , 2021, , .		0
63	Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions. , 2021, , .		0
64	Novel nanotechnology for a fine plasmon wavelength tuning. , 2010, , .		0
65	3D Device Simulation and First Demonstration of BaSi ₂ Thin Film Solar Cells. ECS Meeting	0.0	0