
Giorgio Chiandussi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of multi-objective optimization methodologies for engineering applications. Computers and Mathematics With Applications, 2012, 63, 912-942.	2.7	310
2	Comparative Analysis of Torsional and Bending Stresses in Two Mathematical Models of Nickel-Titanium Rotary Instruments: ProTaper versus ProFile. Journal of Endodontics, 2003, 29, 15-19.	3.1	184
3	Canal Shaping with WaveOne Primary Reciprocating Files and ProTaper System: A Comparative Study. Journal of Endodontics, 2012, 38, 505-509.	3.1	172
4	Use of Nickel-Titanium Rotary PathFile to Create the Glide Path: Comparison With Manual Preflaring in Simulated Root Canals. Journal of Endodontics, 2009, 35, 408-412.	3.1	165
5	Root Canal Anatomy Preservation of WaveOne Reciprocating Files with or without Glide Path. Journal of Endodontics, 2011, 38, 101-4.	3.1	137
6	Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Structural and Multidisciplinary Optimization, 2002, 24, 325-332.	3.5	81
7	A unified statistical model for Sâ€N fatigue curves: probabilistic definition. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 187-201.	3.4	67
8	Effect of microstructure, residual stresses and building orientation on the fatigue response up to 109 cycles of an SLM AlSi10Mg alloy. International Journal of Fatigue, 2020, 137, 105659.	5.7	62
9	A simple method for automatic update of finite element meshes. , 2000, 16, 1-19.		56
10	Effect of Canal Length and Curvature on Working Length Alteration with WaveOne Reciprocating Files. Journal of Endodontics, 2011, 37, 1687-1690.	3.1	53
11	On specimen design for size effect evaluation in ultrasonic gigacycle fatigue testing. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 570-579.	3.4	52
12	Topology optimisation of an automotive component without final volume constraint specification. Advances in Engineering Software, 2004, 35, 609-617.	3.8	49
13	Sâ€N curves in the veryâ€highâ€cycle fatigue regime: statistical modeling based on the hydrogen embrittlement consideration. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1319-1336.	3.4	43
14	VHCF response of Gaussian SLM AlSi10Mg specimens: Effect of a stress relief heat treatment. International Journal of Fatigue, 2019, 124, 435-443.	5.7	42
15	VHCF response of asâ€built SLM AlSi10Mg specimens with large loaded volume. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1918-1928.	3.4	40
16	Maximisation of the crushing performance of a tubular device by shape optimisation. Computers and Structures, 2002, 80, 2425-2432.	4.4	39
17	Influence of adhesive techniques on fracture resistance of endodontically treated premolars with various residual wall thicknesses. Journal of Prosthetic Dentistry, 2013, 110, 376-382.	2.8	34
18	Energy Consumption of ProTaper Next X1 after Glide Path with PathFiles and ProGlider. Journal of Endodontics, 2014, 40, 2015-2018.	3.1	34

2

GIORGIO CHIANDUSSI

#	Article	IF	CITATIONS
19	Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2794-2807.	3.4	34
20	Optimisation of a vehicle energy absorbing steel component with experimental validation. International Journal of Impact Engineering, 2007, 34, 843-858.	5.0	27
21	Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis. Journal of Endodontics, 2015, 41, 1867-1870.	3.1	27
22	Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Structural Integrity, 2017, 7, 50-57.	0.8	25
23	VHCF response of heat-treated SLM Ti6Al4V Gaussian specimens with large loaded volume. Procedia Structural Integrity, 2019, 18, 314-321.	0.8	25
24	Effect of electroslag remelting on the VHCF response of an AISI H13 steel. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1783-1794.	3.4	23
25	VHCF strength decrement in large H13 steel specimens subjected to ESR process. Procedia Structural Integrity, 2016, 2, 1117-1124.	0.8	22
26	Stress flow in thin-walled box beams obtained by adhesive bonding joining technology. International Journal of Adhesion and Adhesives, 2004, 24, 423-439.	2.9	21
27	VHCF Response of AISI H13 Steel: assessment of Size Effects through Gaussian Specimens. Procedia Engineering, 2015, 109, 121-127.	1.2	21
28	Estimation of <scp>Pâ€Sâ€N</scp> curves in veryâ€highâ€cycle fatigue: Statistical procedure based on a general crack growth rate model. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 718-726.	3.4	20
29	Very high cycle fatigue (VHCF) response of additively manufactured materials: A review. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2919-2943.	3.4	20
30	Comparison between dog-bone and Gaussian specimens for size effect evaluation in gigacycle fatigue. Frattura Ed Integrita Strutturale, 2013, 7, 49-56.	0.9	18
31	Topology optimization with optimality criteria and transmissible loads. Computers and Mathematics With Applications, 2009, 57, 772-788.	2.7	17
32	Vehicle Crashworthiness Design — General Principles and Potentialities of Composite Material Structures. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2011, , 193-264.	0.6	17
33	Shape variable definition with and C2 continuity functions. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 727-742.	6.6	16
34	VHCF Response up to 109 Cycles of SLM AlSi10Mg Specimens Built in a Vertical Direction. Applied Sciences (Switzerland), 2019, 9, 2954.	2.5	16
35	Bonnet weight reduction and VRU protection: Design proposals implementing non-conventional materials. International Journal of Automotive Technology, 2010, 11, 831-842.	1.4	15
36	Evaluation of Pressure Distribution against Root Canal Walls of NiTi Rotary Instruments by Finite Element Analysis. Applied Sciences (Switzerland), 2020, 10, 2981.	2.5	14

GIORGIO CHIANDUSSI

#	Article	IF	CITATIONS
37	On the solution of a minimum compliance topology optimisation problem by optimality criteria without a priori volume constraint specification. Computational Mechanics, 2006, 38, 77-99.	4.0	13
38	Statistical distributions of Transition Fatigue Strength and Transition Fatigue Life in duplex S–N fatigue curves. Theoretical and Applied Fracture Mechanics, 2015, 80, 31-39.	4.7	12
39	Gaussian specimens for VHCF tests: Analytical prediction of damping effects. International Journal of Fatigue, 2016, 83, 36-41.	5.7	12
40	Innovative formulation for topological fatigue optimisation based on material defects distribution and TopFat algorithm. International Journal of Fatigue, 2021, 147, 106176.	5.7	12
41	Duplex S-N fatigue curves: statistical distribution of the transition fatigue life. Frattura Ed Integrita Strutturale, 2014, 8, 417-423.	0.9	10
42	Study of a synchronizer mechanism through multibody dynamic analysis. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 1601-1613.	1.9	10
43	Evaluation of the fatigue strength of notched specimens by the point and line methods with high stress ratios. International Journal of Fatigue, 2005, 27, 639-650.	5.7	9
44	Different Inclusion Contents in H13 Steel: Effects on VHCF Response of Gaussian Specimens. Key Engineering Materials, 0, 665, 49-52.	0.4	9
45	Statistical Estimation of Duplex S-N Curves. Key Engineering Materials, 0, 664, 285-294.	0.4	9
46	Estimation of the Synchronization Time of a Transmission System through Multi Body Dynamic Analysis. International Journal of Mechanical Engineering and Robotics Research, 2017, , 232-236.	1.0	9
47	An innovative testing technique for assessing the VHCF response of adhesively bonded joints. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 84-96.	3.4	8
48	Topology and fibre orientation simultaneous optimisation: A design methodology for fibre-reinforced composite components. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 1267-1279.	1.1	8
49	Design sensitivity analysis method for multidisciplinary shape optimisation problems with linear and nonâ€linear responses. Engineering Computations, 1998, 15, 391-417.	1.4	7
50	Effect of defect size on P-S-N curves in Very-High-Cycle Fatigue. Procedia Structural Integrity, 2017, 7, 335-342.	0.8	7
51	VHCF Response of H13 Steels Produced with Different Manufacturing Processes. Procedia Engineering, 2016, 160, 93-100.	1.2	6
52	A new methodology for thermostructural topology optimization: Analytical definition and validation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 481-500.	1.1	6
53	Crack growth from internal defects and related size-effect in VHCF. Procedia Structural Integrity, 2017, 5, 247-254.	0.8	5
54	A general model for crack growth from initial defect in Very-High-Cycle Fatigue. Procedia Structural Integrity, 2017, 3, 411-423.	0.8	5

GIORGIO CHIANDUSSI

#	Article	IF	CITATIONS
55	Gaussian Specimens for Gigacycle Fatigue Tests: Evaluation of Temperature Increment. Key Engineering Materials, 0, 627, 85-88.	0.4	4
56	Gaussian Specimens for Gigacycle Fatigue Tests: Damping Effects. Procedia Engineering, 2014, 74, 113-118.	1.2	4
57	Analytical Design of Gigacycle Fatigue Specimens for Size Effect Evaluation. Key Engineering Materials, 0, 577-578, 369-372.	0.4	3
58	Uncertainty in fatigue loading: Consequences on statistical evaluation of reliability in service. Probabilistic Engineering Mechanics, 2013, 33, 38-46.	2.7	2
59	Working Length Transfer in the Endodontic Clinical Practice: A Comparative Study. Applied Sciences (Switzerland), 2020, 10, 5824.	2.5	2
60	Comparative evaluation of the enamel margins roughness obtained with different finishing devices. Minerva Stomatologica: A Journal on Dentirstry and Maxillofacial Surgery, 2012, 61, 1-9.	1.3	2
61	Experimental-Numerical Assessment of Critical SIF from VHCF Tests. Key Engineering Materials, 2016, 713, 62-65.	0.4	1
62	Numerical Computation of Stress Intensity Factors in Ultrasonic Very-High-Cycle Fatigue Tests. Key Engineering Materials, 0, 754, 218-221.	0.4	1
63	Modal Dynamic Analysis of a Synchronizer Mechanism: A Numerical Study. International Journal of Mechanical Engineering and Robotics Research, 2019, , 340-346.	1.0	1
64	Identification of strain-rate sensitivity parameters of steel sheet by genetic algorithm optimisation. WIT Transactions on the Built Environment, 2006, , .	0.0	0