K Christopher Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046928/publications.pdf

Version: 2024-02-01

		12322	13365
133	22,149	69	130
papers	citations	h-index	g-index
152	152	152	27515
153	153	153	27515
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373, 871-876.	6.0	2,843
2	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	13.7	779
3	Structural Basis of Wnt Recognition by Frizzled. Science, 2012, 337, 59-64.	6.0	711
4	Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 2020, 580, 269-273.	13.7	587
5	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	13.7	574
6	Hexameric Structure and Assembly of the Interleukin-6/IL-6 Â-Receptor/gp130 Complex. Science, 2003, 300, 2101-2104.	6.0	554
7	Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nature Protocols, 2014, 9, 2574-2585.	5.5	532
8	Deconstructing the Peptide-MHC Specificity of T Cell Recognition. Cell, 2014, 157, 1073-1087.	13.5	483
9	Molecular and Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System. Cell, 2008, 132, 259-272.	13.5	462
10	Exploiting a natural conformational switch to engineer an interleukin-2 †superkine'. Nature, 2012, 484, 529-533.	13.7	438
11	Adrenaline-activated structure of \hat{l}^2 2-adrenoceptor stabilized by an engineered nanobody. Nature, 2013, 502, 575-579.	13.7	436
12	Structure of the Quaternary Complex of Interleukin-2 with Its \hat{A} , \hat{A} , and \hat{A} c Receptors. Science, 2005, 310, 1159-1163.	6.0	421
13	Engineered SIRPα Variants as Immunotherapeutic Adjuvants to Anticancer Antibodies. Science, 2013, 341, 88-91.	6.0	401
14	In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331.	9.4	398
15	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	13.7	362
16	Structural Biology of Shared Cytokine Receptors. Annual Review of Immunology, 2009, 27, 29-60.	9 . 5	348
17	Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 2022, 603, 321-327.	13.7	343
18	Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 2017, 545, 360-364.	13.7	336

#	Article	IF	CITATIONS
19	Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature, 2017, 545, 238-242.	13.7	327
20	Structural Linkage between Ligand Discrimination and Receptor Activation by Type I Interferons. Cell, 2011, 146, 621-632.	13.5	310
21	Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 2020, 588, 670-675.	13.7	273
22	Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2646-54.	3.3	272
23	Structural and Mechanistic Insights into Nerve Growth Factor Interactions with the TrkA and p75 Receptors. Neuron, 2007, 53, 25-38.	3.8	270
24	Surrogate Wnt agonists that phenocopy canonical Wnt and \hat{l}^2 -catenin signalling. Nature, 2017, 545, 234-237.	13.7	264
25	Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science, 2015, 347, 1113-1117.	6.0	261
26	Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science, 2018, 359, 1037-1042.	6.0	254
27	Structure of an Extracellular gp130 Cytokine Receptor Signaling Complex. Science, 2001, 291, 2150-2155.	6.0	248
28	Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science, 2017, 355, 1320-1324.	6.0	232
29	T Cell Receptor Signaling Is Limited by Docking Geometry to Peptide-Major Histocompatibility Complex. Immunity, 2011, 35, 681-693.	6.6	229
30	Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell, 2018, 174, 672-687.e27.	13.5	229
31	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	13.5	226
32	Structural basis for Notch1 engagement of Delta-like 4. Science, 2015, 347, 847-853.	6.0	222
33	The molecular basis of TCR germline bias for MHC is surprisingly simple. Nature Immunology, 2009, 10, 143-147.	7.0	219
34	An Extracellular Interactome of Immunoglobulin and LRR Proteins Reveals Receptor-Ligand Networks. Cell, 2013, 154, 228-239.	13.5	207
35	Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nature Immunology, 2012, 13, 1187-1195.	7.0	206
36	Insights into Cytokine–Receptor Interactions from Cytokine Engineering. Annual Review of Immunology, 2015, 33, 139-167.	9.5	204

#	Article	IF	Citations
37	Structural and dynamic determinants of type <scp>I</scp> interferon receptor assembly and their functional interpretation. Immunological Reviews, 2012, 250, 317-334.	2.8	201
38	Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nature Methods, 2014, 11, 572-578.	9.0	196
39	Polyspecificity of T cell and B cell receptor recognition. Seminars in Immunology, 2007, 19, 216-224.	2.7	194
40	Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity, 2015, 42, 815-825.	6.6	191
41	Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. Journal of Experimental Medicine, 2018, 215, 141-157.	4.2	186
42	A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nature Medicine, 2018, 24, 1005-1014.	15.2	165
43	Design of protein-binding proteins from the target structure alone. Nature, 2022, 605, 551-560.	13.7	164
44	Allosteric Activation of a Spring-Loaded Natriuretic Peptide Receptor Dimer by Hormone. Science, 2001, 293, 1657-1662.	6.0	159
45	How the T Cell Receptor Sees Antigen—A Structural View. Cell, 2005, 122, 333-336.	13.5	159
46	Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell, 2015, 163, 1770-1782.	13.5	155
47	Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nature Genetics, 2016, 48, 995-1002.	9.4	151
48	Interleukin-2 Activity Can Be Fine Tuned with Engineered Receptor Signaling Clamps. Immunity, 2015, 42, 826-838.	6.6	147
49	Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature, 2019, 572, 481-487.	13.7	141
50	Tuning Cytokine Receptor Signaling by Re-orienting Dimer Geometry with Surrogate Ligands. Cell, 2015, 160, 1196-1208.	13.5	138
51	Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science, 2020, 367, 643-652.	6.0	123
52	Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nature Immunology, 2016, 17, 87-94.	7.0	122
53	BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expression and Purification, 2008, 62, 160-170.	0.6	120
54	Alpha and Beta Type 1 Interferon Signaling: Passage for Diverse Biologic Outcomes. Cell, 2016, 164, 349-352.	13.5	120

#	Article	IF	Citations
55	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	5.8	113
56	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
57	Molecular architecture of the αβ T cell receptor–CD3 complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17576-17581.	3.3	107
58	Localized CD47 blockade enhances immunotherapy for murine melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10184-10189.	3.3	103
59	Structural Insight into Pre-B Cell Receptor Function. Science, 2007, 316, 291-294.	6.0	101
60	Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathogens, 2018, 14, e1007420.	2.1	100
61	Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation. Cell, 2017, 168, 1053-1064.e15.	13.5	98
62	Structural Organization of a Full-Length gp130/LIF-R Cytokine Receptor Transmembrane Complex. Molecular Cell, 2008, 31, 737-748.	4.5	94
63	An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature, 2021, 597, 544-548.	13.7	94
64	The IFN-λ-IFN-λR1-IL-10Rβ Complex Reveals Structural Features Underlying Type III IFN Functional Plasticity. Immunity, 2017, 46, 379-392.	6.6	89
65	Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. Science, 2019, 364, .	6.0	89
66	Structure of the IFNÎ ³ receptor complex guides design of biased agonists. Nature, 2019, 567, 56-60.	13.7	85
67	Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy InÂVivo. Cell Stem Cell, 2020, 27, 840-851.e6.	5.2	84
68	In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9338-E9345.	3.3	83
69	Global analysis of shared TÂcell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity, 2021, 54, 586-602.e8.	6.6	80
70	Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science, 2021, 371, .	6.0	79
71	Structural Snapshots of Full-Length Jak1, a Transmembrane gp130/IL-6/IL-6Rα Cytokine Receptor Complex, and the Receptor-Jak1 Holocomplex. Structure, 2011, 19, 45-55.	1.6	78
72	Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell, 2021, 184, 983-999.e24.	13.5	78

#	Article	IF	Citations
73	Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science, 2022, 376, 163-169.	6.0	78
74	T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability. Nature Chemical Biology, 2018, 14, 934-942.	3.9	77
75	"Velcro―Engineering of High Affinity CD47 Ectodomain as Signal Regulatory Protein α (SIRPα) Antagonists That Enhance Antibody-dependent Cellular Phagocytosis. Journal of Biological Chemistry, 2015, 290, 12650-12663.	1.6	7 5
76	Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nature Chemical Biology, 2012, 8, 990-998.	3.9	73
77	Compensatory Energetic Mechanisms Mediating the Assembly of Signaling Complexes Between Interleukin-2 and its \hat{l}_{\pm} , \hat{l}_{\pm} , and \hat{l}_{\pm} Receptors. Journal of Molecular Biology, 2004, 339, 1115-1128.	2.0	70
78	Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell, 2017, 168, 1041-1052.e18.	13.5	70
79	Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. ELife, 2020, 9, .	2.8	68
80	A RECK-WNT7 Receptor-Ligand Interaction Enables Isoform-Specific Regulation of Wnt Bioavailability. Cell Reports, 2018, 25, 339-349.e9.	2.9	65
81	A human orthogonal IL-2 and IL- $2R\hat{l}^2$ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Science Translational Medicine, 2021, 13, eabg6986.	5.8	64
82	Multifarious Determinants of Cytokine Receptor Signaling Specificity. Advances in Immunology, 2014, 121, 1-39.	1.1	62
83	Extracellular Architecture of the SYG-1/SYG-2 Adhesion Complex Instructs Synaptogenesis. Cell, 2014, 156, 482-494.	13.5	59
84	Immune receptor inhibition through enforced phosphatase recruitment. Nature, 2020, 586, 779-784.	13.7	59
85	Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. Journal of Immunology, 2018, 201, 2094-2106.	0.4	58
86	Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency. Science Signaling, 2015, 8, ra114.	1.6	57
87	A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Cell, 2020, 182, 1027-1043.e17.	13.5	57
88	Reconciling views on T cell receptor germline bias for MHC. Trends in Immunology, 2012, 33, 429-436.	2.9	53
89	Tuning T cell receptor sensitivity through catch bond engineering. Science, 2022, 376, eabl5282.	6.0	53
90	Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. ELife, 2017, 6, .	2.8	51

#	Article	IF	Citations
91	Inhibition of Delta-induced Notch signaling using fucose analogs. Nature Chemical Biology, 2018, 14, 65-71.	3.9	46
92	Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. Journal of Clinical Investigation, 2021, 131, .	3.9	46
93	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	13.5	45
94	Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8427-8432.	3.3	43
95	Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. ELife, 2017, 6, .	2.8	41
96	Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. ELife, 2018, 7, .	2.8	41
97	Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature, 2022, 607, 360-365.	13.7	41
98	The Intergenic Recombinant HLA-Bâ^—46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Reports, 2017, 19, 1394-1405.	2.9	40
99	Wnt acylation and its functional implication in Wnt signalling regulation. Biochemical Society Transactions, 2015, 43, 211-216.	1.6	39
100	<i>Trans</i> -endocytosis of intact IL-15Rα–IL-15 complex from presenting cells into NK cells favors signaling for proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 522-531.	3.3	38
101	Receptor subtype discrimination using extensive shape complementary designed interfaces. Nature Structural and Molecular Biology, 2019, 26, 407-414.	3.6	36
102	The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity, 2021, 54, 660-672.e9.	6.6	36
103	Structure and selectivity engineering of the M ₁ muscarinic receptor toxin complex. Science, 2020, 369, 161-167.	6.0	35
104	Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nature Communications, 2017, 8, 15976.	5.8	34
105	Facile discovery of surrogate cytokine agonists. Cell, 2022, 185, 1414-1430.e19.	13.5	33
106	Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling. Science Advances, 2016, 2, e1600452.	4.7	31
107	A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages. PLoS Pathogens, 2018, 14, e1007307.	2.1	25
108	Tuning MPL signaling to influence hematopoietic stem cell differentiation and inhibit essential thrombocythemia progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24

#	Article	IF	CITATIONS
109	Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. ELife, 2021, 10, .	2.8	23
110	Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7369-E7378.	3.3	21
111	Super-enhancer-based identification of a BATF3/IL-2Râ^'module reveals vulnerabilities in anaplastic large cell lymphoma. Nature Communications, 2021, 12, 5577.	5.8	21
112	Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. ELife, 2020, 9, .	2.8	21
113	Interleukin-2 druggability is modulated by global conformational transitions controlled by a helical capping switch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7183-7192.	3.3	20
114	Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC l–deficient and MHC I ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200568119.	3.3	20
115	Selective targeting of ligand-dependent and -independent signaling by GPCR conformation-specific anti-US28 intrabodies. Nature Communications, 2021, 12, 4357.	5.8	18
116	Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity, 2021, 54, 1405-1416.e7.	6.6	18
117	Structure of the IL-27 quaternary receptor signaling complex. ELife, 2022, 11, .	2.8	18
118	RasGRP1 is a potential biomarker for stratifying anti-EGFR therapy response in colorectal cancer. JCI Insight, 2019, 4 , .	2.3	17
119	A strategy for the selection of monovalent antibodies that span protein dimer interfaces. Journal of Biological Chemistry, 2019, 294, 13876-13886.	1.6	16
120	Surrogate R-spondins for tissue-specific potentiation of Wnt Signaling. PLoS ONE, 2020, 15, e0226928.	1.1	15
121	Mesenchymal-epithelial crosstalk shapes intestinal regionalisation via Wnt and Shh signalling. Nature Communications, 2022, 13, 715.	5.8	15
122	Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infection and Immunity, 2016, 84, 2833-2841.	1.0	13
123	Dual Arms of Adaptive Immunity: Division of Labor and Collaboration between B and T Cells. Cell, 2019, 179, 3-7.	13.5	12
124	Interleukin-2 superkines by computational design. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117401119.	3.3	12
125	T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nature Biotechnology, 2022, 40, 488-498.	9.4	12
126	Atypical structural snapshots of human cytomegalovirus GPCR interactions with host G proteins. Science Advances, 2022, 8, eabl5442.	4.7	11

#	Article	IF	CITATIONS
127	Viral G Protein–Coupled Receptors Encoded by β- and γ-Herpesviruses. Annual Review of Virology, 2022, 9, 329-351.	3.0	11
128	Interrogating the recognition landscape of a conserved HIV-specific TCR reveals distinct bacterial peptide cross-reactivity. ELife, 2020, 9, .	2.8	6
129	Cryoâ€EM structure of the ILâ€10 receptor complex provides a blueprint for ligand engineering. FEBS Journal, 2022, 289, 8032-8036.	2.2	3
130	Insights into immune structure, recognition, and signaling. Immunological Reviews, 2012, 250, 5-9.	2.8	2
131	Self-Determination in the T Cell Repertoire. Immunity, 2015, 42, 8-10.	6.6	O
132	A Conversation with Dr. K. Christopher Garcia. Journal of Interferon and Cytokine Research, 2021, 41, 355-359.	0.5	0
133	CD47 Blockade Enhances Therapeutic Activity of TCR Mimic Antibodies to Ultra-Low Density Cancer Epitopes through Cytokine Feed Forward Mechanisms. Blood, 2016, 128, 4048-4048.	0.6	0