
Alexander Leshansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046867/publications.pdf Version: 2024-02-01

ALEXANDED LESHANSKY

#	Article	IF	CITATIONS
1	Swimming by reciprocal motion at low Reynolds number. Nature Communications, 2014, 5, 5119.	5.8	349
2	Chaos and threshold for irreversibility in sheared suspensions. Nature, 2005, 438, 997-1000.	13.7	286
3	Nanopropellers and Their Actuation in Complex Viscoelastic Media. ACS Nano, 2014, 8, 8794-8801.	7.3	286
4	Tunable Nonlinear Viscoelastic "Focusing―in a Microfluidic Device. Physical Review Letters, 2007, 98, 234501.	2.9	259
5	Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters, 2017, 17, 5092-5098.	4.5	182
6	Breakup of drops in a microfluidic T junction. Physics of Fluids, 2009, 21, .	1.6	176
7	Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Physical Review E, 2009, 80, 051911.	0.8	129
8	The chiral magnetic nanomotors. Nanoscale, 2014, 6, 1580-1588.	2.8	111
9	Step-emulsification in a microfluidic device. Lab on A Chip, 2015, 15, 1023-1031.	3.1	96
10	Obstructed Breakup of Slender Drops in a Microfluidic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi>Junction. Physical Review Letters, 2012, 108, 264502.</mml:math 	2.9	93
11	Optimal Length of Low Reynolds Number Nanopropellers. Nano Letters, 2015, 15, 4412-4416.	4.5	78
12	Numerical investigation of elongated drops in a microfluidic T-junction. Physics of Fluids, 2011, 23, .	1.6	72
13	A frictionless microswimmer. New Journal of Physics, 2007, 9, 145-145.	1.2	67
14	Helical Nanomachines as Mobile Viscometers. Advanced Functional Materials, 2018, 28, 1705687.	7.8	63
15	Surface tank treading: Propulsion of Purcell's toroidal swimmer. Physics of Fluids, 2008, 20, 063104.	1.6	59
16	Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Physical Review Fluids, 2017, 2, .	1.0	59
17	Droplets in Microchannels: Dynamical Properties of the Lubrication Film. Physical Review Letters, 2015, 115, 064501.	2.9	58
18	Spray-Coating Route for Highly Aligned and Large-Scale Arrays of Nanowires. ACS Nano, 2012, 6, 4702-4712.	7.3	54

ALEXANDER LESHANSKY

#	Article	IF	CITATIONS
19	Undulatory locomotion of finite filaments: lessons from <i>Caenorhabditis elegans</i> . New Journal of Physics, 2013, 15, 075022.	1.2	48
20	Droplet generation at Hele-Shaw microfluidic T-junction. Physics of Fluids, 2019, 31, .	1.6	47
21	Direct Measurement of Helical Cell Motion of the Spirochete Leptospira. Biophysical Journal, 2014, 106, 47-54.	0.2	43
22	On the forced convective heat transport in a droplet-laden flow in microchannels. Microfluidics and Nanofluidics, 2008, 4, 533-542.	1.0	42
23	Autonomous bacterial nanoswimmers target cancer. Journal of Controlled Release, 2017, 257, 68-75.	4.8	39
24	Dynamics and polarization of superparamagnetic chiral nanomotors in a rotating magnetic field. Nanoscale, 2014, 6, 12142-12150.	2.8	38
25	Geometric constraints and optimization in externally driven propulsion. Science Robotics, 2018, 3, .	9.9	34
26	Dynamic structure factor study of diffusion in strongly sheared suspensions. Journal of Fluid Mechanics, 2005, 527, 141-169.	1.4	30
27	Microfluidic step-emulsification in axisymmetric geometry. Lab on A Chip, 2017, 17, 3609-3620.	3.1	30
28	Efficiency of cargo towing by a microswimmer. Physical Review E, 2008, 77, 055305.	0.8	27
29	Do small swimmers mix the ocean?. Physical Review E, 2010, 82, 025301.	0.8	27
30	Role of symmetry in driven propulsion at low Reynolds number. Physical Review E, 2018, 98, .	0.8	27
31	Thermocapillary interaction between a solid particle and a liquid-gas interface. Physics of Fluids, 1997, 9, 2818-2827.	1.6	21
32	Collective diffusion in sheared colloidal suspensions. Journal of Fluid Mechanics, 2008, 597, 305-341.	1.4	21
33	Phytoplankton's motion in turbulent ocean. Physical Review E, 2015, 92, 013017.	0.8	19
34	Spontaneous thermocapillary interaction of drops, bubbles and particles: Unsteady convective effects at low Peclet numbers. Physics of Fluids, 1999, 11, 1768-1780.	1.6	16
35	Thermocapillary migration of bubbles: convective effects at low Péclet number. Journal of Fluid Mechanics, 2001, 443, 377-401.	1.4	15
36	Double emulsions with ultrathin shell by microfluidic step-emulsification. Lab on A Chip, 2021, 21, 1613-1622.	3.1	15

ALEXANDER LESHANSKY

#	Article	IF	CITATIONS
37	Printing Nanostructures with a Propelled Antiâ€Pinning Ink Droplet. Advanced Functional Materials, 2015, 25, 2411-2419.	7.8	14
38	Fundamental solution of unsteady Stokes equations and force on an oscillating sphere near a wall. Physical Review E, 2018, 98, .	0.8	14
39	Thermocapillary Alignment of Gas Bubbles Induced by Convective Transport. Journal of Colloid and Interface Science, 2001, 240, 544-551.	5.0	13
40	Modeling and analysis of hydrodynamic and physico-chemical effects in bacterial deposition on surfaces. Biofouling, 2013, 29, 977-989.	0.8	13
41	On the influence of mass transfer on coalescence of bubbles. International Journal of Multiphase Flow, 2001, 27, 189-196.	1.6	12
42	The rheologic properties of erythrocytes: a study using an automated rheoscope. Rheologica Acta, 2007, 46, 621-627.	1.1	12
43	Towards focusing of a swarm of magnetic micro/nanomotors. Physical Chemistry Chemical Physics, 2020, 22, 16407-16420.	1.3	11
44	Spontaneous Interaction of Drops, Bubbles and Particles in Viscous Fluid Driven by Capillary Inhomogeneities. Industrial & Engineering Chemistry Research, 2002, 41, 357-366.	1.8	10
45	Unidirectional Propulsion of Planar Magnetic Nanomachines. Physical Review Applied, 2019, 12, .	1.5	10
46	Actin-based propulsion of a microswimmer. Physical Review E, 2006, 74, 012901.	0.8	9
47	Shape-controlled anisotropy of superparamagnetic micro-/nanohelices. Nanoscale, 2016, 8, 14127-14138.	2.8	9
48	Photonics of Template-Mediated Lattices of Colloidal Clusters. Langmuir, 2019, 35, 3987-3991.	1.6	9
49	Dynamics of Thin Liquid Films with Nonsoluble Surfactants:Â Weakly Nonlinear Analysis. Langmuir, 2000, 16, 2049-2051.	1.6	7
50	The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number. Journal of Fluid Mechanics, 2004, 505, 235-248.	1.4	7
51	Nonlinear rupture of thin liquid films on solid surfaces. Physical Review E, 2005, 71, 040601.	0.8	6
52	Controlling Marangoni flow directionality: patterning nano-materials using sessile and sliding volatile droplets. European Physical Journal: Special Topics, 2017, 226, 1307-1324.	1.2	6
53	The weakly inertial settling of particles in a viscous fluid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 3079-3098.	1.0	5
54	Convective stability of turbulent Boussinesq flow in the dissipative range and flow around small particles. Physical Review E, 2014, 90, 053002.	0.8	5

#	Article	IF	CITATIONS
55	Fluid-Mediated Force on a Particle Due to an Oscillating Plate and Its Effect on Deposition Measurements by a Quartz Crystal Microbalance. Physical Review Letters, 2020, 125, 144501.	2.9	5
56	Force on a sphere via the generalized reciprocal theorem. Physics of Fluids, 2004, 16, 843-844.	1.6	4
57	Flexible helical yarn swimmers. European Physical Journal E, 2016, 39, 87.	0.7	4
58	Modeling Propulsion of Soft Magnetic Nanowires. Frontiers in Robotics and AI, 2020, 7, 595777.	2.0	4
59	Theory of hydrodynamic interaction of two spheres in wall-bounded shear flow. Physical Review Fluids, 2020, 5, .	1.0	4
60	Rupture of thin liquid films: Generalization of weakly nonlinear theory. Physical Review E, 2011, 83, 031603.	0.8	3
61	Integral representation of channel flow with interacting particles. Physical Review E, 2017, 96, 063110.	0.8	3
62	Mobility of a Slender Object in Entangled Polymer Solution. Macromolecules, 0, , .	2.2	3
63	Biphasic co-flow through a sudden expansion or contraction of a Hele-Shaw channel. Physical Review Fluids, 2021, 6, .	1.0	2
64	Thermocapillary motion of a slender viscous droplet in a channel. Physics of Fluids, 2012, 24, 022102.	1.6	1
65	The Oseen problem for a finite collection of spheres settling in a viscous liquid. European Journal of Mechanics, B/Fluids, 2012, 31, 71-79.	1.2	1