
Kailong Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/204654/publications.pdf Version: 2024-02-01

KALLONG LIN

4.8

4.8

4.8

31

106

#	Article	IF	CITATIONS
1	Three-Dimensional Printing of Liquid Crystals with Thermal Sensing Capability via Multimaterial Vat Photopolymerization. ACS Applied Polymer Materials, 2022, 4, 2951-2959.	4.4	16
2	Chemically recyclable crosslinked thiolâ€ene photopolymers via thiolâ€disulfide exchange reactions. Journal of Polymer Science, 2022, 60, 3379-3390.	3.8	4
3	Arresting Elevated-Temperature Creep and Achieving Full Cross-Link Density Recovery in Reprocessable Polymer Networks and Network Composites via Nitroxide-Mediated Dynamic Chemistry. Macromolecules, 2021, 54, 1452-1464.	4.8	64
4	3D Printing‣nabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small, 2021, 17, e2100817.	10.0	61
5	Porous Fibers Templated by Melt Blowing Cocontinuous Immiscible Polymer Blends. ACS Macro Letters, 2021, 10, 1196-1203.	4.8	11
6	Sensing the melting transition of semicrystalline polymers via a novel fluorescence technique. Polymer, 2021, 230, 124070.	3.8	2
7	Bimodal Nanofiber and Microfiber Nonwovens by Melt-Blowing Immiscible Ternary Polymer Blends. Industrial & Engineering Chemistry Research, 2020, 59, 5238-5246.	3.7	18
8	Sustainable Triblock Copolymers as Tunable and Degradable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 12036-12044.	6.7	19
9	Impact of bottlebrush chain architecture on <i>T</i> _g â€confinement and <scp>fragilityâ€confinement</scp> effects enabled by thermoâ€cleavable bottlebrush polymers synthesized by radical coupling and atom transfer radical polymerization. Journal of Polymer Science, 2020, 58, 2887-2905.	3.8	7
10	Crazing Mechanism and Physical Aging of Poly(lactide) Toughened with Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 4.8	0 382 Td (o:
11	Multiblock Copolymers for Recycling Polyethylene–Poly(ethylene terephthalate) Mixed Waste. ACS Applied Materials & Interfaces, 2020, 12, 9726-9735.	8.0	51
12	Reprocessing Postconsumer Polyurethane Foam Using Carbamate Exchange Catalysis and Twin-Screw Extrusion. ACS Central Science, 2020, 6, 921-927.	11.3	116
13	Cross-Linked Nonwoven Fibers by Room-Temperature Cure Blowing and in Situ Photopolymerization. Macromolecules, 2019, 52, 6662-6672.	4.8	22
14	Isolating the effect of polymer-grafted nanoparticle interactions with matrix polymer from dispersion on composite property enhancement: The example of polypropylene/halloysite nanocomposites. Polymer, 2019, 176, 38-50.	3.8	24
15	Mechanically Robust and Recyclable Cross-Linked Fibers from Melt Blown Anthracene-Functionalized Commodity Polymers. ACS Applied Materials & Interfaces, 2019, 11, 12863-12870.	8.0	42

Segmented Thermoplastic Polymers Synthesized by Thiol–Ene Click Chemistry: Examples of Thiol–Norbornene and Thiol–Maleimide Click Reactions. Macromolecules, 2018, 51, 3620-3631.

Melt-Blown Cross-Linked Fibers from Thermally Reversible Diels–Alder Polymer Networks. ACS Macro Letters, 2018, 7, 1339-1345.

Compatibilization of Isotactic Polypropylene (<i>i</i>PP) and High-Density Polyethylene (HDPE) with <i>i</i>PP–PE Multiblock Copolymers. Macromolecules, 2018, 51, 8585-8596.

16

18

Kailong Jin

#	Article	IF	CITATIONS
19	Vitrimers Designed Both To Strongly Suppress Creep and To Recover Original Cross-Link Density after Reprocessing: Quantitative Theory and Experiments. Macromolecules, 2018, 51, 5537-5546.	4.8	218
20	T g -confinement effects in strongly miscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene: Roles of bulk fragility and chain segregation. Polymer, 2017, 118, 85-96.	3.8	14
21	Bulk physical aging behavior of cross-linked polystyrene compared to its linear precursor: Effects of cross-linking and aging temperature. Polymer, 2017, 115, 197-203.	3.8	11
22	Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polymer Chemistry, 2017, 8, 6349-6355.	3.9	159
23	Enhanced <i>T</i> _g -Confinement Effect in Cross-Linked Polystyrene Compared to Its Linear Precursor: Roles of Fragility and Chain Architecture. Macromolecules, 2016, 49, 5092-5103.	4.8	39
24	Phase-Separated Thiol–Epoxy–Acrylate Hybrid Polymer Networks with Controlled Cross-Link Density Synthesized by Simultaneous Thiol–Acrylate and Thiol–Epoxy Click Reactions. Macromolecules, 2016, 49, 4115-4123.	4.8	53
25	Recyclable Crosslinked Polymer Networks via One‣tep Controlled Radical Polymerization. Advanced Materials, 2016, 28, 6746-6750.	21.0	99
26	Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer, 2015, 65, 233-242.	3.8	27
27	Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: Effects of catalysis and functionality. Polymer, 2015, 81, 70-78.	3.8	50