
Farnaz Ghorbani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determinants of gold nanoparticle interactions with Proteins: Off-Target effect study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120736.	3.9	5
2	Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers, 2022, 14, 986.	4.5	41
3	The Dibenzyl Isoquinoline Alkaloid Berbamine Ameliorates Osteoporosis by Inhibiting Bone Resorption. Frontiers in Endocrinology, 2022, 13, .	3.5	3
4	Musselâ€inspired polydopamine induced the osteoinductivity to iceâ€templating PLGA–gelatin matrix for bone tissue engineering application. Biotechnology and Applied Biochemistry, 2021, 68, 185-196.	3.1	19
5	Plasma surface modification technique–induced gelatin grafting on bio-originated polyurethane porous matrix: Physicochemical and in vitro study. Polymers and Polymer Composites, 2021, 29, 640-651.	1.9	7
6	Tuning the biomimetic behavior of hybrid scaffolds for bone tissue engineering through surface modifications and drug immobilization. Materials Science and Engineering C, 2021, 130, 112434.	7.3	38
7	Bioprinting a cellâ€laden matrix for bone regeneration: A focused review. Journal of Applied Polymer Science, 2021, 138, 49888.	2.6	14
8	Polydopamine nanospheres coated with bovine serum albumin permit enhanced cell differentiation: fundamental mechanism and practical application for protein coating formation. Nanoscale, 2021, 13, 20098-20110.	5.6	14
9	A Facile Method to Synthesize 3D Pomegranate-like Polydopamine Microspheres. Frontiers in Bioengineering and Biotechnology, 2021, 9, 737074.	4.1	6
10	Bioactive Inks Development for Osteochondral Tissue Engineering: A Mini-Review. Gels, 2021, 7, 274.	4.5	14
11	Physicochemical properties of chitosan–hydroxyapatite matrix incorporated with <i>Ginkgo biloba</i> -loaded PLGA microspheres for tissue engineering applications. Polymers and Polymer Composites, 2020, 28, 320-330.	1.9	2
12	A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting, 2020, 17, e00063.	5.8	84
13	A bioinspired 3D shape olibanumâ€collagenâ€gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration. Biotechnology Progress, 2020, 36, e2918.	2.6	21
14	Immobilization of polyvinyl alcoholâ€siloxane on the oxygen plasmaâ€modified polyurethaneâ€carbon nanotube composite matrix. Journal of Applied Polymer Science, 2020, 137, 48477.	2.6	9
15	Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications. Biomedizinische Technik, 2020, 65, 273-287.	0.8	24
16	The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers. Journal of Polymer Engineering, 2020, 40, 109-119.	1.4	11
17	Conductive electrospun polyurethane-polyaniline scaffolds coated with poly(vinyl alcohol)-GPTMS under oxygen plasma surface modification. Materials Today Communications, 2020, 22, 100752.	1.9	19
18	Surface Functionalization of Three Dimensional-Printed Polycaprolactone-Bioactive Glass Scaffolds by Grafting GelMA Under UV Irradiation. Frontiers in Materials, 2020, 7, .	2.4	14

Farnaz Ghorbani

#	Article	IF	CITATIONS
19	Schisandrin A restrains osteoclastogenesis by inhibiting reactive oxygen species and activating Nrf2 signalling. Cell Proliferation, 2020, 53, e12882.	5.3	46
20	Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. Journal of Polymer Research, 2020, 27, 1.	2.4	20
21	An efficient functionalization of dexamethasone-loaded polymeric scaffold with [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent for bone regeneration: Synthesis, characterization, and in vitro evaluation. Journal of Bioactive and Compatible Polymers, 2020, 35, 139-159.	2.1	6
22	Decoration of electrical conductive polyurethaneâ€polyaniline/polyvinyl alcohol matrixes with musselâ€inspired polydopamine for bone tissue engineering. Biotechnology Progress, 2020, 36, e3043.	2.6	24
23	Effect of Silane-Coupling Modification on the Performance of chitosan-poly vinyl Alcohol-Hybrid Scaffolds in Bone Tissue Engineering. Silicon, 2020, 12, 3015-3026.	3.3	9
24	3D printing of acellular scaffolds for bone defect regeneration: A review. Materials Today Communications, 2020, 22, 100979.	1.9	46
25	Bioactive and biostable hyaluronic acid-pullulan dermal hydrogels incorporated with biomimetic hydroxyapatite spheres. Materials Science and Engineering C, 2020, 112, 110906.	7.3	25
26	Effects of lamellar microstructure of retinoic acid loaded-matrixes on physicochemical properties, migration, and neural differentiation of P19 embryonic carcinoma cells. Journal of Polymer Engineering, 2020, 40, 647-656.	1.4	1
27	Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application. Journal of Polymer Engineering, 2019, 39, 526-533.	1.4	2
28	Fabrication and characterisation of superâ€paramagnetic responsive PLGA–gelatine–magnetite scaffolds with the unidirectional porous structure: a physicochemical, mechanical, and <i>in vitro</i> evaluation. IET Nanobiotechnology, 2019, 13, 860-867.	3.8	28
29	Bone-like hydroxyapatite mineralization on the bio-inspired PDA nanoparticles using microwave irradiation. Surfaces and Interfaces, 2019, 15, 38-42.	3.0	38
30	Bioinspired polydopamine coatingâ€assisted electrospun polyurethaneâ€graphene oxide nanofibers for bone tissue engineering application. Journal of Applied Polymer Science, 2019, 136, 47656.	2.6	34
31	Novel bioactive porous starch–siloxane matrix for bone regeneration: Physicochemical, mechanical, and <i>in vitro</i> properties. Biotechnology and Applied Biochemistry, 2019, 66, 43-52.	3.1	26
32	A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Materials Science and Engineering C, 2019, 94, 729-739.	7.3	68
33	Oxygen-plasma treatment-induced surface engineering of biomimetic polyurethane nanofibrous scaffolds for gelatin-heparin immobilization. E-Polymers, 2018, 18, 275-285.	3.0	24
34	The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties. Macromolecular Materials and Engineering, 2018, 303, 1700539.	3.6	54
35	Microwave-induced rapid formation of biomimetic hydroxyapatite coating on gelatin-siloxane hybrid microspheres in 10X-SBF solution. E-Polymers, 2018, 18, 247-255.	3.0	28
36	A novel pathway for <i>in situ</i> synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. Journal of Applied Polymer Science, 2018, 135, 46739.	2.6	33

FARNAZ GHORBANI

#	Article	IF	CITATIONS
37	Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications. Journal of Polymer Engineering, 2017, 37, 933-941.	1.4	26
38	Synergistic effects of retinoic acid and graphene oxide on the physicochemical and in-vitro properties of electrospun polyurethane scaffolds for bone tissue engineering. E-Polymers, 2017, 17, 363-371.	3.0	23
39	Effects of pore orientation on in-vitro properties of retinoic acid-loaded PLGA/gelatin scaffolds for artificial peripheral nerve application. Materials Science and Engineering C, 2017, 77, 159-172.	7.3	47
40	Oriented Microstructure in Neural Tissue Engineering: A Review. Journal of Tissue Science & Engineering, 2016, 07, .	0.2	5
41	Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering C, 2016, 69, 208-220.	7.3	65
42	Synthesis, Physico-chemical Characteristics And Cellular Behavior Of Poly (lactic-co-glycolic Acid)/ Gelatin Nanofibrous Scaffolds For Engineering Soft Connective Tissues. Advanced Materials Letters, 2016, 7, 163-169.	0.6	18
43	Morphological Comparison of PLGA/Gelatin Scaffolds Produced by Freeze Casting and Freeze Drying Methods. Applied Mechanics and Materials, 0, 467, 108-111.	0.2	12