Onder Altuntas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2046029/publications.pdf

Version: 2024-02-01

777949 759306 49 527 13 22 citations h-index g-index papers 51 51 51 271 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Calculating Endogenous and Exogenous Exergy Destruction for an Experimental Turbojet Engine. International Journal of Turbo and Jet Engines, 2022, 39, 233-240.	0.3	13
2	Sustainability analyses of photovoltaic electrolysis and magnetic heat engine coupled novel system used for hydrogen production and electricity generation. Sustainable Energy Technologies and Assessments, 2022, 52, 102094.	1.7	2
3	Comparing different piston-prop aircraft engines with combustion efficiency and exergy. Journal of Thermal Analysis and Calorimetry, 2021, 145, 659-667.	2.0	3
4	An analysis on energy performance indicator and GWP at Airports; a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 2402-2418.	1.2	5
5	Investigation of indoor air quality and thermal comfort condition in airport terminal buildings. Aircraft Engineering and Aerospace Technology, 2021, 93, 25-34.	0.7	3
6	Lead emissions from the use of leaded avgas in Turkey. Aircraft Engineering and Aerospace Technology, 2021, 93, 493-501.	0.7	3
7	Novel combined extended-advanced exergy analysis methodology as a new tool to assess thermodynamic systems. Energy Conversion and Management, 2021, 236, 114019.	4.4	14
8	Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production. Renewable and Sustainable Energy Reviews, 2021, 149, 111323.	8.2	22
9	Thermoecologic Assessment and Life Cycle–Based Environmental Pollution Cost Analysis of Microgas Turbine. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	10
10	The analysis of emission values from commercial flights at Dalaman international airport Turkey. Aircraft Engineering and Aerospace Technology, 2020, 92, 1451-1457.	0.7	16
11	VSI: Environment & amp; Energy. Journal of Environmental Management, 2020, 270, 110668.	3.8	O
12	Optimum Insulation Thickness for Cooling Applications Using Combined Environmental and Economic Method. Green Energy and Technology, 2020, , 483-492.	0.4	0
13	Fundamentals of Sustainability. , 2019, , 3-5.		2
14	Comparative analysis of various refrigerants used in transport refrigeration based on thermodynamics and environmental performances and cold chain management. International Journal of Global Warming, 2019, 19, 407.	0.2	1
15	Exergetic approach to determine optimum insulation thickness for cooling applications with life cycle integrated economic analysis. International Journal of Exergy, 2019, 30, 307.	0.2	1
16	LCA of the maintenance of a piston-prop engine. Aircraft Engineering and Aerospace Technology, 2019, 91, 987-993.	0.7	12
17	Exergetic approach to determine optimum insulation thickness for cooling applications with life cycle integrated economic analysis. International Journal of Exergy, 2019, 30, 307.	0.2	0
18	Comparative analysis of various refrigerants used in transport refrigeration based on thermodynamics and environmental performances and cold chain management. International Journal of Global Warming, 2019, 19, 407.	0.2	0

#	Article	IF	CITATIONS
19	Sustainability Metrics of a Small Scale Turbojet Engine. International Journal of Turbo and Jet Engines, 2018, 35, 113-119.	0.3	16
20	Determination of optimum insulation thickness for building's walls with respect to different insulation materials: a case study of International Hasan Polatkan Airport terminal. International Journal of Sustainable Aviation, 2018, 4, 147.	0.1	1
21	Effect of ammonia fuel fraction on the exergetic performance of a gas turbine. Energy Procedia, 2018, 144, 150-156.	1.8	6
22	Aircraft fuel system energy and exergy analysis under hot day conditions. International Journal of Exergy, 2018, 25, 152.	0.2	2
23	Aircraft fuel system energy and exergy analysis under hot day conditions. International Journal of Exergy, 2018, 25, 152.	0.2	1
24	Exergy and Energy Analysis of an Aircraft Air Cycle Machine at Designated Altitude. Green Energy and Technology, 2018, , 905-910.	0.4	0
25	Determination of optimum insulation thickness for building's walls with respect to different insulation materials: a case study of International Hasan Polatkan Airport terminal. International Journal of Sustainable Aviation, 2018, 4, 147.	0.1	0
26	Energy, exergy analysis, and sustainability assessment of different engine powers for helicopter engines. International Journal of Green Energy, 2017, 14, 1093-1099.	2.1	22
27	Economic and Environmental Optimization of an Airport Terminal Building's Wall and Roof Insulation. Sustainability, 2017, 9, 1849.	1.6	27
28	Assessment of a ramjet engine for different Mach numbers. International Journal of Sustainable Aviation, 2017, 3, 325.	0.1	0
29	Assessment of thermodynamic and environmental performances in subcooling process for different refrigerants. International Journal of Exergy, 2017, 24, 216.	0.2	0
30	Assessment of thermodynamic and environmental performances in subcooling process for different refrigerants. International Journal of Exergy, 2017, 24, 216.	0.2	0
31	Assessment of a ramjet engine for different Mach numbers. International Journal of Sustainable Aviation, 2017, 3, 325.	0.1	O
32	HAVALİMANI TERMİNAL BİNALARINDA ISI YALITIMI VE ISICAMIN ENERJİ PERFORMANSINA ETKİSİ. Journa Aviation, 2017, 1, 1-7.	l 8.1	0
33	Performance Evaluation of an Experimental Turbojet Engine. International Journal of Turbo and Jet Engines, 2016, .	0.3	20
34	Sustainability Assessment in Piston-Prop Helicopter Engine. , 2016, , 115-123.		1
35	Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol. International Journal of Exergy, 2016, 19, 295.	0.2	34
36	Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 2016, 83, 57-69.	6.3	73

#	Article	IF	CITATIONS
37	Investigation of thermodynamic performance based on the humidity effect in the aircraft environmental control systems. International Journal of Sustainable Aviation, 2015, 1, 203.	0.1	1
38	Exergoeconomic Environmental Optimization of Piston-Prop Aircraft Engines. International Journal of Green Energy, 2015, 12, 41-50.	2.1	10
39	A Parametric Study of a Piston-Prop Aircraft Engine Using Exergy and Exergoeconomic Analysis Methods. International Journal of Green Energy, 2015, 12, 2-14.	2.1	18
40	Designation of Environmental Impacts and Damages of Turbojet Engine: A Case Study with GE-J85. Atmosphere, 2014, 5, 307-323.	1.0	6
41	Calculation of domestic flight-caused global warming potential from aircraft emissions in Turkish airports. International Journal of Global Warming, 2014, 6, 367.	0.2	23
42	Environmental measurements at Monte Cimone GAW station. International Journal of Global Warming, 2014, 6, 424.	0.2	1
43	Environmental impact assessment of a turboprop engine with the aid of exergy. Energy, 2013, 58, 664-671.	4.5	74
44	Calculation of HC, CO and NO _{x from civil aviation in Turkey in 2012. International Journal of Environment and Pollution, 2013, 53, 232.}	0.2	38
45	Assessment of Energy Efficiencies and Environmental Impacts of Railway and Bus Transportation Options., 2013,, 921-931.		0
46	Investigation of environmental impact caused by aircraft engines. International Journal of Global Warming, 2013, 5, 282.	0.2	6
47	Exergoenvironmental analysis of piston-prop aircrafts. International Journal of Exergy, 2012, 10, 290.	0.2	23
48	Comparison of Auxiliary Power Unit (APU) and Ground Power Unit (GPU) with Life Cycle Analysis in Ground Operations: A Case Study for Domestic Flight in Turkey. Applied Mechanics and Materials, 0, 629, 219-224.	0.2	11
49	Exergetic Investigation of a Turboshaft Helicopter Engine Related to Engine Power. SAE International Journal of Aerospace, 0, 13, 257-267.	4.0	5