
Martin Hadamitzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glioma: molecular signature and crossroads with tumor microenvironment. Cancer and Metastasis Reviews, 2022, 41, 53-75.	2.7	63
2	Harnessing associative learning paradigms to optimize drug treatment. Trends in Pharmacological Sciences, 2022, 43, 464-472.	4.0	5
3	Neurobehavioral effects in rats with experimentally induced glioblastoma after treatment with the mTOR-inhibitor rapamycin. Neuropharmacology, 2021, 184, 108424.	2.0	4
4	Treatment with the calcineurin inhibitor and immunosuppressant cyclosporine A impairs sensorimotor gating in Dark Agouti rats. Psychopharmacology, 2021, 238, 1047-1057.	1.5	1
5	Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro, 2021, 13, 175909142110050.	1.5	10
6	A step-by-step guide for microsurgical collection of uncontaminated cerebrospinal fluid from rat cisterna magna. Journal of Neuroscience Methods, 2021, 352, 109085.	1.3	7
7	Incomplete reminder cues trigger memory reconsolidation and sustain learned immune responses. Brain, Behavior, and Immunity, 2021, 95, 115-121.	2.0	4
8	Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiological Reviews, 2020, 100, 357-405.	13.1	47
9	Learned Immunosuppressive Placebo Response Attenuates Disease Progression in a Rodent Model of Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 588-597.	2.9	11
10	Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomyelination in the Developing Brain. Frontiers in Neurology, 2020, 11, 804.	1.1	14
11	How learning shapes immunity. Neuroforum, 2020, 26, 179-184.	0.2	0
12	Impact of optic canal decompression on visual outcome in subtotal resected skull base meningiomas. Journal of Neurosurgical Sciences, 2020, 64, 440-445.	0.3	1
13	Symbolic analysis of heart rate fluctuations identifies cardiac autonomic modifications during LPS-induced endotoxemia. Autonomic Neuroscience: Basic and Clinical, 2019, 221, 102577.	1.4	4
14	Behaviorally conditioned immunosuppression with cyclosporine A forms long lasting memory trace. Behavioural Brain Research, 2019, 376, 112208.	1.2	4
15	Behavioral conditioning of anti-proliferative and immunosuppressive properties of the mTOR inhibitor rapamycin. Brain, Behavior, and Immunity, 2019, 79, 326-331.	2.0	9
16	Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatric Research, 2019, 85, 198-215.	1.1	11
17	Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. International Journal of Neuropsychopharmacology, 2018, 21, 592-602.	1.0	27
18	Placebo Effects in the Immune System. International Review of Neurobiology, 2018, 138, 39-59.	0.9	25

MARTIN HADAMITZKY

#	Article	IF	CITATIONS
19	Editorial: Clinical Relevance of the Immune-to-Brain and Brain-to-Immune Communications. Frontiers in Behavioral Neuroscience, 2018, 12, 336.	1.0	5
20	Applications and limitations of behaviorally conditioned immunopharmacological responses. Neurobiology of Learning and Memory, 2017, 142, 91-98.	1.0	17
21	Acute administration of cyclosporine A does not impair attention or memory performance in healthy men. Behavioural Pharmacology, 2017, 28, 255-261.	0.8	2
22	Oxytocin's role on the cardiorespiratory activity of endotoxemic rats. Respiratory Physiology and Neurobiology, 2017, 236, 19-22.	0.7	14
23	Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	29
24	Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. Brain, Behavior, and Immunity, 2016, 52, 106-119.	2.0	69
25	Rats taste-aversive learning with cyclosporine a is not affected by contextual changes. Behavioural Brain Research, 2016, 312, 169-173.	1.2	6
26	Exogenous oxytocin reduces signs of sickness behavior and modifies heart rate fluctuations of endotoxemic rats. Physiology and Behavior, 2016, 165, 223-230.	1.0	15
27	Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A. Neurobiology of Learning and Memory, 2016, 133, 129-135.	1.0	12
28	Pre-exposure to the unconditioned or conditioned stimulus does not affect learned immunosuppression in rats. Brain, Behavior, and Immunity, 2016, 51, 252-257.	2.0	15
29	Effects of Neurexan ® in an experimental acute stress setting — An explorative double-blind study in healthy volunteers. Life Sciences, 2016, 146, 139-147.	2.0	17
30	Memory-updating abrogates extinction of learned immunosuppression. Brain, Behavior, and Immunity, 2016, 52, 40-48.	2.0	30
31	Extinction of conditioned taste aversion is related to the aversion strength and associated with c-fos expression in the insular cortex. Neuroscience, 2015, 303, 34-41.	1.1	30
32	Neurobehavioral consequences of small molecule-drug immunosuppression. Neuropharmacology, 2015, 96, 83-93.	2.0	15
33	Pre-exposure to the unconditioned or the conditioned stimulus differentially affect learned immunosuppression in rats. Journal of Neuroimmunology, 2014, 275, 183.	1.1	0
34	Teach the T cells: How learning can shape immunity. Journal of Neuroimmunology, 2014, 275, 185-186.	1.1	1
35	Acute systemic rapamycin induces neurobehavioral alterations in rats. Behavioural Brain Research, 2014, 273, 16-22.	1.2	37
36	Amygdaloid Signature of Peripheral Immune Activation by Bacterial Lipopolysaccharide or Staphylococcal Enterotoxin B. Journal of NeuroImmune Pharmacology, 2013, 8, 42-50.	2.1	35

MARTIN HADAMITZKY

#	Article	IF	CITATIONS
37	Learned Immunosuppression: Extinction, Renewal, and the Challenge of Reconsolidation. Journal of NeuroImmune Pharmacology, 2013, 8, 180-188.	2.1	20
38	The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model. Neuroscience Letters, 2013, 556, 170-175.	1.0	3
39	Alterations in the striatal dopamine system during intravenous methamphetamine exposure: Effects of contingent and noncontingent administration. Synapse, 2013, 67, 476-488.	0.6	18
40	Development of stereotyped behaviors during prolonged escalation of methamphetamine self-administration in rats. Psychopharmacology, 2012, 223, 259-269.	1.5	15
41	Extended access to methamphetamine self-administration affects sensorimotor gating in rats. Behavioural Brain Research, 2011, 217, 386-390.	1.2	26
42	Impact of the NCAM derived mimetic peptide plannexin on the acute cellular consequences of a status epilepticus. Neuroscience Letters, 2011, 501, 173-178.	1.0	3
43	Impact of the erythropoietin-derived peptide mimetic Epotris on the histopathological consequences of status epilepticus. Epilepsy Research, 2011, 96, 241-249.	0.8	16
44	Effects of acute intra-cerebral administration of the 5-HT2A/C receptor ligands DOI and ketanserin on impulse control in rats. Behavioural Brain Research, 2009, 204, 88-92.	1.2	22
45	Effects of acute systemic administration of serotonin2A/C receptor ligands in a delay-based decision-making task in rats. Behavioural Pharmacology, 2009, 20, 415-423.	0.8	30
46	Deficient prepulse inhibition induced by selective breeding of rats can be restored by the dopamine D2 antagonist haloperidol. Behavioural Brain Research, 2007, 177, 364-367.	1.2	35