Paul Dupree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045776/publications.pdf Version: 2024-02-01

DALLI DILDDEE

#	Article	IF	CITATIONS
1	Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15079-15084.	3.3	861
2	The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 2017, 68, 333-359.	8.2	721
3	VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles Journal of Cell Biology, 1992, 118, 1003-1014.	2.3	529
4	Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6518-6523.	3.3	518
5	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	2.8	478
6	Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts. Plant Physiology, 2005, 137, 104-116.	2.3	445
7	Caveolae and sorting in the trans-Golgi network of epithelial cells EMBO Journal, 1993, 12, 1597-1605.	3.5	423
8	Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis. Plant Physiology, 2003, 132, 568-577.	2.3	364
9	Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal, 2007, 52, 1154-1168.	2.8	338
10	Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 2015, 6, 7481.	5.8	328
11	COBRA, an Arabidopsis Extracellular Glycosyl-Phosphatidyl Inositol-Anchored Protein, Specifically Controls Highly Anisotropic Expansion through Its Involvement in Cellulose Microfibril Orientation. Plant Cell, 2005, 17, 1749-1763.	3.1	321
12	Localization of Organelle Proteins by Isotope Tagging (LOPIT). Molecular and Cellular Proteomics, 2004, 3, 1128-1134.	2.5	305
13	Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications, 2016, 7, 13902.	5.8	287
14	Absence of branches from xylan in Arabidopsis <i>gux</i> mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17409-17414.	3.3	283
15	Characterization of IRX10 and IRX10â€ŀike reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant Journal, 2009, 57, 732-746.	2.8	279
16	The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 2016, 12, 298-303.	3.9	264
17	Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 989-993.	3.3	263
18	Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications, 2015, 6, 5961.	5.8	254

#	Article	IF	CITATIONS
19	Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels, 2013, 6, 46.	6.2	251
20	VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System A. Plant Physiology, 2010, 153, 906-914.	2.3	250
21	Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 2002, 6, 46-50.	2.8	248
22	The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 79, 492-506.	2.8	243
23	Resolution of the structural isomers of partially methylesterified oligogalacturonides by polysaccharide analysis using carbohydrate gel electrophoresis. Glycobiology, 2006, 16, 29-35.	1.3	221
24	Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Current Opinion in Biotechnology, 2019, 56, 97-104.	3.3	208
25	An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants, 2017, 3, 859-865.	4.7	204
26	An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Communications, 2018, 9, 756.	5.8	192
27	Targeting of Active Sialyltransferase to the Plant Golgi Apparatus. Plant Cell, 1998, 10, 1759-1768.	3.1	187
28	Glycosylphosphatidylinositol Lipid Anchoring of Plant Proteins. Sensitive Prediction from Sequence- and Genome-Wide Studies for Arabidopsis and Rice. Plant Physiology, 2003, 133, 1691-1701.	2.3	185
29	Prediction of Clycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis: Table I Plant Physiology, 2002, 129, 486-499.	2.3	181
30	A Novel Bioinformatics Approach Identifies Candidate Genes for the Synthesis and Feruloylation of Arabinoxylan. Plant Physiology, 2007, 144, 43-53.	2.3	181
31	Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant Journal, 2009, 60, 527-538.	2.8	180
32	SETH1 and SETH2, Two Components of the Glycosylphosphatidylinositol Anchor Biosynthetic Pathway, Are Required for Pollen Germination and Tube Growth in Arabidopsis Â[W]. Plant Cell, 2004, 16, 229-240.	3.1	178
33	<scp>GUX</scp> 1 and <scp>GUX</scp> 2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant Journal, 2013, 74, 423-434.	2.8	169
34	Polysaccharide Analysis Using Carbohydrate Gel Electrophoresis: A Method to Study Plant Cell Wall Polysaccharides and Polysaccharide Hydrolases. Analytical Biochemistry, 2002, 300, 53-68.	1.1	167
35	Molecular architecture of softwood revealed by solid-state NMR. Nature Communications, 2019, 10, 4978.	5.8	157
36	ECA3, a Golgi-Localized P2A-Type ATPase, Plays a Crucial Role in Manganese Nutrition in Arabidopsis. Plant Physiology, 2008, 146, 116-128.	2.3	155

#	Article	IF	CITATIONS
37	Unusual Microbial Xylanases from Insect Guts. Applied and Environmental Microbiology, 2004, 70, 3609-3617.	1.4	154
38	The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic Proteins[W]. Plant Cell, 2003, 15, 1859-1871.	3.1	153
39	Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO Journal, 1993, 12, 1597-605.	3.5	152
40	Putative Glycosyltransferases and Other Plant Golgi Apparatus Proteins Are Revealed by LOPIT Proteomics Â. Plant Physiology, 2012, 160, 1037-1051.	2.3	149
41	Co-operative regulation of endocytosis by three RAB5 isoforms. FEBS Letters, 1995, 366, 65-71.	1.3	144
42	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283-2295.	3.1	142
43	β-Galactosyl Yariv Reagent Binds to the β-1,3-Galactan of Arabinogalactan Proteins Â. Plant Physiology, 2013, 161, 1117-1126.	2.3	142
44	Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant Journal, 1998, 16, 633-641.	2.8	138
45	Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis. Electrophoresis, 1999, 20, 2027-2035.	1.3	136
46	A proteomic approach identifies many novel palmitoylated proteins in <scp>A</scp> rabidopsis. New Phytologist, 2013, 197, 805-814.	3.5	135
47	Arabidopsis genes <i>IRREGULAR XYLEM</i> (<i>IRX15</i>) and <i>IRX15L</i> encode DUF579â€containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant Journal, 2011, 66, 401-413.	2.8	134
48	Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose. Plant Physiology, 2016, 171, 2418-2431.	2.3	134
49	Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nature Communications, 2017, 8, 1064.	5.8	134
50	UDP-Glucose 4-Epimerase Isoforms UGE2 and UGE4 Cooperate in Providing UDP-Galactose for Cell Wall Biosynthesis and Growth of Arabidopsis thaliana. Plant Cell, 2007, 19, 1565-1579.	3.1	133
51	Structural Characterization of Arabidopsis Leaf Arabinogalactan Polysaccharides Â. Plant Physiology, 2012, 160, 653-666.	2.3	132
52	A proteomic analysis of organelles fromArabidopsis thaliana. Electrophoresis, 2000, 21, 3488-3499.	1.3	128
53	Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Current Genetics, 2005, 48, 366-379.	0.8	128
54	Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. Journal of Cell Science, 1993, 106, 1249-1261.	1.2	128

#	Article	IF	CITATIONS
55	Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p Journal of Cell Biology, 1993, 123, 47-55.	2.3	120
56	Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta, 2003, 218, 27-36.	1.6	120
57	An evolutionary route to xylanase process fitness. Protein Science, 2004, 13, 494-503.	3.1	113
58	The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	3.3	113
59	The plant Golgi apparatus. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 259-270.	1.9	111
60	Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications, 2016, 7, 11656.	5.8	110
61	AtCSLA7, a Cellulose Synthase-Like Putative Glycosyltransferase, Is Important for Pollen Tube Growth and Embryogenesis in Arabidopsis. Plant Physiology, 2003, 131, 547-557.	2.3	109
62	The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochemical Journal, 2003, 371, 1027-1043.	1.7	104
63	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	5.9	103
64	Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydrate Research, 2010, 345, 2648-2656.	1.1	101
65	Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology, 2009, 19, 212-228.	1.3	99
66	Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophoresis, 2001, 22, 2075-2085.	1.3	97
67	Quantitative proteomic approach to study subcellular localization of membrane proteins. Nature Protocols, 2006, 1, 1778-1789.	5.5	96
68	The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genetics and Biology, 2014, 72, 34-47.	0.9	95
69	Structure elucidation of arabinoxylan isomers by normal phase HPLC–MALDI-TOF/TOF-MS/MS. Carbohydrate Research, 2007, 342, 724-735.	1.1	93
70	Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. Journal of Cell Science, 1994, 107, 3437-3448.	1.2	93
71	A Deficiency of the Small GTPase rab8 Inhibits Membrane Traffic in Developing Neurons. Molecular and Cellular Biology, 1995, 15, 918-924.	1.1	92
72	Abnormal Glycosphingolipid Mannosylation Triggers Salicylic Acid–Mediated Responses in <i>Arabidopsis</i> Á Â. Plant Cell, 2013, 25, 1881-1894.	3.1	92

#	Article	IF	CITATIONS
73	VIP21-Caveolin, a protein of thetrans-Golgi network and caveolae. FEBS Letters, 1994, 346, 88-91.	1.3	86
74	Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiology, 2015, 169, pp.00690.2015.	2.3	86
75	A β–glucuronosyltransferase from <i><scp>A</scp>rabidopsis thaliana</i> involved in biosynthesis of typeÂ <scp>II</scp> arabinogalactan has a role in cell elongation during seedling growth. Plant Journal, 2013, 76, 1016-1029.	2.8	84
76	Guilt by insolubility - does a protein's detergent insolubility reflect a caveolar location?. Trends in Cell Biology, 1995, 5, 187-189.	3.6	84
77	A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 128-137.	2.8	80
78	Identification of a Sphingolipid α-Glucuronosyltransferase That Is Essential for Pollen Function in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 3314-3325.	3.1	80
79	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	2.8	79
80	Methods of quantitative proteomics and their application to plant organelle characterization. Journal of Experimental Botany, 2006, 57, 1493-1499.	2.4	77
81	An unusual xylan in Arabidopsis primary cell walls is synthesised by <scp>GUX</scp> 3, <scp>IRX</scp> 9L, <scp>IRX</scp> 10L and <scp>IRX</scp> 14. Plant Journal, 2015, 83, 413-426.	2.8	77
82	Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Frontiers in Plant Science, 2020, 11, 610377.	1.7	76
83	Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochemical Society Transactions, 2016, 44, 74-78.	1.6	75
84	A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Applied Microbiology and Biotechnology, 2007, 74, 113-124.	1.7	71
85	Subâ€cellular localization of membrane proteins. Proteomics, 2008, 8, 3991-4011.	1.3	71
86	Probing the Molecular Architecture of <i>Arabidopsis thaliana</i> Secondary Cell Walls Using Two- and Three-Dimensional ¹³ C Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 2335-2345.	1.2	69
87	Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Molecular Genetics and Genomics, 2004, 272, 397-410.	1.0	67
88	Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytologist, 2018, 218, 1049-1060.	3.5	67
89	Dynamic Response of Prevacuolar Compartments to Brefeldin A in Plant Cells. Plant Physiology, 2006, 142, 1442-1459.	2.3	66
90	The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresource Technology, 2010, 101, 9612-9623.	4.8	66

#	Article	IF	CITATIONS
91	Suppression of xylan endotransglycosylase <i>PtxtXyn10A</i> affects cellulose microfibril angle in secondary wall in aspen wood. New Phytologist, 2015, 205, 666-681.	3.5	66
92	Calcium Binding by Arabinogalactan Polysaccharides Is Important for Normal Plant Development. Plant Cell, 2020, 32, 3346-3369.	3.1	65
93	Effects of Xylan Side-Chain Substitutions on Xylan–Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass. Biomacromolecules, 2017, 18, 1311-1321.	2.6	64
94	Evidence That GH115 α-Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility. Journal of Biological Chemistry, 2014, 289, 53-64.	1.6	63
95	The Patterned Structure of Galactoglucomannan Suggests It May Bind to Cellulose in Seed Mucilage. Plant Physiology, 2018, 178, 1011-1026.	2.3	62
96	The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochemical Society Transactions, 2004, 32, 520-523.	1.6	61
97	UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell, 2017, 29, 129-143.	3.1	60
98	Characterisation of FUT4 and FUT6 α-(1→2)-Fucosyltransferases Reveals that Absence of Root Arabinogalactan Fucosylation Increases Arabidopsis Root Growth Salt Sensitivity. PLoS ONE, 2014, 9, e93291.	1.1	59
99	A scaffold-associated DNA region is located downstream of the pea plastocyanin gene Plant Cell, 1991, 3, 1239-1250.	3.1	58
100	Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnology for Biofuels, 2017, 10, 224.	6.2	57
101	Mapping of Ras-related GTP-binding proteins by GTP overlay following two-dimensional gel electrophoresis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7874-7878.	3.3	56
102	Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant Journal, 2006, 48, 657-673.	2.8	56
103	Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta, 2015, 242, 1321-1334.	1.6	53
104	Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 2020, 12, 469-497.	5.1	50
105	Biogenesis of Cell-surface Polarity in Epithelial Cells and Neurons. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 611-619.	2.0	50
106	Plant organelle proteomics. Current Opinion in Plant Biology, 2007, 10, 594-599.	3.5	49
107	Label-Free Protein Quantification for Plant Golgi Protein Localization and Abundance. Plant Physiology, 2014, 166, 1033-1043.	2.3	48
108	KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 3397-3409.	3.1	48

#	Article	IF	CITATIONS
109	Galactoglucomannans Increase Cell Population Density and Alter the Protoxylem/Metaxylem Tracheary Element Ratio in Xylogenic Cultures of Zinnia. Plant Physiology, 2006, 142, 696-709.	2.3	47
110	Oligosaccharide relative quantitation using isotope tagging and normalâ€phase liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 2723-2730.	0.7	45
111	Identification of an additional protein involved in mannan biosynthesis. Plant Journal, 2013, 73, 105-117.	2.8	45
112	Isolation of a mouse cDNA encoding Rab23, a small novel GTPase expressed predominantly in the brain. Gene, 1994, 138, 207-211.	1.0	44
113	Chapter 2 Expression of Exogenous Proteins in Mammalian Cells with the Semliki Forest Virus Vector. Methods in Cell Biology, 1994, 43 Pt A, 43-53.	0.5	44
114	Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. Journal of Cell Science, 1993, 106 (Pt 4), 1249-61.	1.2	42
115	A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant Journal, 2005, 41, 429-441.	2.8	40
116	Phylogenetic and Biochemical Evidence Supports the Recruitment of an ADP-Glucose Translocator for the Export of Photosynthate during Plastid Endosymbiosis. Molecular Biology and Evolution, 2010, 27, 2691-2701.	3.5	40
117	Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. Frontiers in Plant Science, 2019, 10, 1398.	1.7	40
118	Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress. PLoS ONE, 2016, 11, e0159819.	1.1	38
119	Expression of photosynthesis gene-promoter fusions in leaf epidermal cells of transgenic tobacco plants. Plant Journal, 1991, 1, 115-120.	2.8	37
120	Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnology for Biofuels, 2013, 6, 94.	6.2	36
121	An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Scientific Reports, 2019, 9, 4903.	1.6	36
122	Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Analytical Biochemistry, 2003, 321, 174-182.	1.1	30
123	Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Planta, 2006, 224, 163-174.	1.6	29
124	Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nature Communications, 2018, 9, 5125.	5.8	29
125	Importance of Water in Maintaining Softwood Secondary Cell Wall Nanostructure. Biomacromolecules, 2021, 22, 4669-4680.	2.6	29
126	Proteomic Complex Detection Using Sedimentation. Analytical Chemistry, 2007, 79, 2078-2083.	3.2	28

#	Article	IF	CITATIONS
127	Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Bioscience, Biotechnology and Biochemistry, 2014, 78, 818-831.	0.6	26
128	A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. Frontiers in Plant Science, 2018, 9, 384.	1.7	26
129	Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. Biotechnology for Biofuels, 2019, 12, 109.	6.2	26
130	l-Fucose-containing arabinogalactan-protein in radish leaves. Carbohydrate Research, 2015, 415, 1-11.	1.1	25
131	Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity. International Journal of Biological Macromolecules, 2018, 120, 279-287.	3.6	24
132	Guilty by insolubility - does a protein's detergent insolubility reflect a caveolar location?. Trends in Cell Biology, 1995, 5, 187-189.	3.6	23
133	Isolation of a murine cDNA clone encoding Rab 19, a novel tissue-specific small GTPase. Gene, 1995, 155, 257-260.	1.0	23
134	An investigation of pectin methylesterification patterns by two independent methods: capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydrate Research, 2005, 340, 1193-1199.	1.1	23
135	An efficient arabinoxylan-debranching α-l-arabinofuranosidase of family CH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Applied Microbiology and Biotechnology, 2016, 100, 6265-6277.	1.7	23
136	Two members of the <scp>DUF</scp> 579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3, e00117.	0.8	23
137	Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nature Plants, 2022, 8, 656-669.	4.7	23
138	Xylan Structure and Dynamics in Native <i>Brachypodium</i> Grass Cell Walls Investigated by Solid-State NMR Spectroscopy. ACS Omega, 2021, 6, 15460-15471.	1.6	19
139	Hydroxycinnamic acidâ€modified xylan side chains and their crossâ€linking products in rice cell walls are reduced in the <i>Xylosyl arabinosyl substitution of xylan 1</i> mutant. Plant Journal, 2022, 109, 1152-1167.	2.8	18
140	Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. Planta, 2006, 224, 1401-1414.	1.6	17
141	Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases. Biochemistry, 2020, 59, 3347-3358.	1.2	17
142	Scission of Glucosidic Bonds by a <i>Lentinus similis</i> Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H ₂ O ₂ while the Oxidation of Saccharide Products Depends on O ₂ . ACS Catalysis, 2021, 11, 13848-13859.	5.5	17
143	The ectopically parting cells 1-2 (epc1-2) mutant exhibits an exaggerated response to abscisic acid. Journal of Experimental Botany, 2007, 58, 1813-1823.	2.4	16
144	Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases crossâ€linking. Plant Biotechnology Journal, 2020, 18, 2316-2327.	4.1	16

#	Article	IF	CITATIONS
145	Functional metagenomic screening identifies an unexpected Î ² -glucuronidase. Nature Chemical Biology, 2022, 18, 1096-1103.	3.9	16
146	Palmitoylation in plants. Plant Signaling and Behavior, 2013, 8, e25209.	1.2	15
147	Spontaneous rearrangement of acetylated xylan on hydrophilic cellulose surfaces. Cellulose, 2021, 28, 3327-3345.	2.4	14
148	The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nature Communications, 2022, 13, .	5.8	14
149	Sequence of a canine cDNA clone encoding a Ran/TC4 GTP-binding protein. Gene, 1992, 120, 325-326.	1.0	13
150	Two conifer GUX clades are responsible for distinct glucuronic acid patterns on xylan. New Phytologist, 2021, 231, 1720-1733.	3.5	13
151	Determination of the <i>N</i> -Glycosylation Patterns of Seed Proteins: Applications To Determine the Authenticity and Substantial Equivalence of Genetically Modified (GM) Crops. Journal of Agricultural and Food Chemistry, 2011, 59, 8779-8788.	2.4	12
152	Studies of Enzymatic Cleavage of Cellulose Using Polysaccharide Analysis by Carbohydrate gel Electrophoresis (PACE). Methods in Enzymology, 2012, 510, 51-67.	0.4	12
153	Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1810-1817.	0.6	12
154	Secondary cell wall characterization in a BY-2 inductive system. Plant Cell, Tissue and Organ Culture, 2013, 115, 223-232.	1.2	11
155	Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron, 2019, 126, 102733.	1.1	11
156	Plant embryogenesis: Cell division forms a pattern. Current Biology, 1996, 6, 683-685.	1.8	10
157	GARNet, the Genomic Arabidopsis Resource Network. Trends in Plant Science, 2002, 7, 145-147.	4.3	10
158	BdGT43B2 functions in xylan biosynthesis and is essential for seedling survival in <i>Brachypodium distachyon</i> . Plant Direct, 2020, 4, e00216.	0.8	10
159	Carbohydrate Gel Electrophoresis. Methods in Molecular Biology, 2011, 715, 81-92.	0.4	9
160	Galactoglucomannan structure of Arabidopsis seedâ€coat mucilage in <scp>GDP</scp> â€mannose synthesis impaired mutants. Physiologia Plantarum, 2021, 173, 1244-1252.	2.6	9
161	Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems. Planta, 2014, 239, 1041-1053.	1.6	8
162	Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biology, 2021, 19, 233.	1.7	8

#	Article	IF	CITATIONS
163	Water deficit and abscisic acid treatments increase the expression of a glucomannan mannosyltransferase gene (GMMT) in Aloe vera Burm. F Phytochemistry, 2019, 159, 90-101.	1.4	7
164	The <i>Arabidopsis thaliana</i> nucleotide sugar transporter GONST2 is a functional homolog of GONST1. Plant Direct, 2021, 5, e00309.	0.8	7
165	Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus <i>Phanerochaete chrysosporium</i> . Journal of Applied Glycoscience (1999), 2022, 69, 35-43.	0.3	7
166	A Scaffold-Associated DNA Region Is Located Downstream of the Pea Plastocyanin Gene. Plant Cell, 1991, 3, 1239.	3.1	6
167	Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed β-3-prism scaffold. Computational and Structural Biotechnology Journal, 2021, 19, 1108-1118.	1.9	6
168	Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compostâ€derived consortium. Biotechnology and Bioengineering, 2021, 118, 4052-4064.	1.7	5
169	[32] Use of antisense oligonucleotides to study Rab function in Vivo. Methods in Enzymology, 1995, 257, 302-312.	0.4	4
170	Internal fragmentation of proteins in polyacrylamide matrices for microsequencing. The Protein Journal, 1992, 11, 356-356.	1.1	2
171	Proteomic Complex Detection using Sedimentation (ProCoDeS): screening for proteins in stable complexes and their candidate interaction partners. Biochemical Society Transactions, 2010, 38, 923-927.	1.6	2
172	Compartmentalization of rab Proteins in Mammalian Cells. Handbook of Experimental Pharmacology, 1993, , 423-445.	0.9	2
173	Protein Sorting and Glycolipid-Enriched Detergent-Insoluble Complexes in Epithelial Cells. , 1994, , 107-114.		1
174	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283.	3.1	0
175	Modification of plant cell wall sugar composition for biorefining and bioenergy. New Biotechnology, 2009, 25, S246-S247.	2.4	0
176	Expression of a Pea Gene for Ferredoxin-NADP+ Oxidoreductase in Transgenic Tobacco Plants. , 1990, , 2531-2534.		0
177	Regulation of Expression of the Pea Plastocyanin Gene. , 1992, , 23-29.		0
178	Structure determination of lytic polysaccharide monooxygenases interactions with substrate. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e36-e36.	0.0	0
179	Carbohydrate Gel Electrophoresis. Methods in Molecular Biology, 2020, 2149, 33-44.	0.4	0