Howard M Prentice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045620/publications.pdf

Version: 2024-02-01

30 papers

1,035 citations

16 h-index 28 g-index

30 all docs 30 docs citations

30 times ranked

1657 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-7.	1.9	201
2	Taurine and central nervous system disorders. Amino Acids, 2014, 46, 31-46.	1.2	121
3	Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. Journal of Biomedical Science, 2010, 17, S17.	2.6	72
4	Taurine and Its Neuroprotective Role. Advances in Experimental Medicine and Biology, 2013, 775, 19-27.	0.8	68
5	Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis. Nutrients, 2017, 9, 795.	1.7	68
6	The Mechanism of Taurine Protection Against Endoplasmic Reticulum Stress in an Animal Stroke Model of Cerebral Artery Occlusion and Stroke-Related Conditions in Primary Neuronal Cell Culture. Advances in Experimental Medicine and Biology, 2013, 776, 241-258.	0.8	60
7	Beneficial effect of taurine on hypoxia- and glutamate-induced endoplasmic reticulum stress pathways in primary neuronal culture. Amino Acids, 2012, 43, 845-855.	1.2	58
8	Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. Journal of Biomedical Science, 2020, 27, 19.	2.6	34
9	Hypoxia-Regulated Retinal Glial Cell–Specific Promoter for Potential Gene Therapy in Disease. , 2011, 52, 8562.		32
10	A Hypoxia-Responsive Glial Cell-Specific Gene Therapy Vector for Targeting Retinal Neovascularization. Investigative Ophthalmology and Visual Science, 2014, 55, 8044-8053.	3 . 3	31
11	Protection of taurine and granulocyte colony-stimulating factor against excitotoxicity induced by glutamate in primary cortical neurons. Journal of Biomedical Science, 2010, 17, S18.	2.6	29
12	Sulindac confers high level ischemic protection to the heart through late preconditioning mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19611-19616.	3.3	27
13	Mode of Action of S-Methyl-N, N-Diethylthiocarbamate Sulfoxide (DETC-MeSO) as a Novel Therapy for Stroke in a Rat Model. Molecular Neurobiology, 2014, 50, 655-672.	1.9	25
14	Pharmacological protection of retinal pigmented epithelial cells by sulindac involves PPAR-α. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16754-16759.	3. 3	24
15	Granulocyte-colony stimulating factor protects against endoplasmic reticulum stress in an experimental model of stroke. Brain Research, 2018, 1682, 1-13.	1.1	23
16	Neuroprotective Functions Through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model. Advances in Experimental Medicine and Biology, 2017, 975 Pt 1, 193-205.	0.8	21
17	Analysis of Neuroprotection by Taurine and Taurine Combinations in Primary Neuronal Cultures and in Neuronal Cell Lines Exposed to Glutamate Excitotoxicity and to Hypoxia/Re-oxygenation. Advances in Experimental Medicine and Biology, 2017, 975 Pt 1, 207-216.	0.8	20
18	Upregulation of Hsp72 mediates anoxia/reoxygenation neuroprotection in the freshwater turtle via modulation of ROS. Brain Research, 2014, 1582, 247-256.	1.1	17

#	Article	IF	Citations
19	Robust hypoxia-selective regulation of a retinal pigment epithelium-specific adeno-associated virus vector. Molecular Vision, 2008, 14 , $471-80$.	1.1	16
20	Protective mechanism of sulindac in an animal model of ischemic stroke. Brain Research, 2014, 1576, 91-99.	1.1	15
21	Regulation of GABA Neurotransmission by Glutamic Acid Decarboxylase (GAD). Current Pharmaceutical Design, 2015, 21, 4939-4942.	0.9	15
22	Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. Journal of Molecular Medicine, 2018, 96, 1107-1118.	1.7	13
23	Granulocyte-colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model. Journal of Biomedical Science, 2020, 27, 99.	2.6	13
24	Activation of Brain L-glutamate Decarboxylase 65 Isoform (GAD65) by Phosphorylation at Threonine 95 (T95). Molecular Neurobiology, 2017, 54, 866-873.	1.9	11
25	Lessons from nature: signalling cascades associated with vertebrate brain anoxic survival. Experimental Physiology, 2016, 101, 1185-1190.	0.9	8
26	Preparation, Stimulation and Other Uses of Adult Rat Brain Synaptosomes. Bio-protocol, 2017, 7, e2664.	0.2	5
27	Potential new therapeutic intervention for ischemic stroke. Journal of Translational Internal Medicine, 2021, 9, 1-3.	1.0	4
28	Sulindac for stroke treatment: neuroprotective mechanism and therapy. Neural Regeneration Research, 2014, 9, 2023.	1.6	3
29	Studies on Left Ventricular Hypertrabeculation/Noncompaction: The Need for In-Depth Ultrastructural Investigations. Cardiology, 2013, 126, 255-257.	0.6	1
30	Upregulation of cellular protective mechanisms against oxidative damage via pharmacological intervention. FASEB Journal, 2019, 33, 651.1.	0.2	0