
Anita Iskandar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045528/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Impact of aerosols on liver xenobiotic metabolism: A comparison of two methods of exposure. Toxicology in Vitro, 2022, 79, 105277.	1.1	2
2	Comparison of the biological impact of aerosol of e-vapor device with MESH® technology and cigarette smoke on human bronchial and alveolar cultures. Toxicology Letters, 2021, 337, 98-110.	0.4	7
3	Toxicological Assessment InÂVitro. , 2021, , 257-304.		0
4	Assessment of in vitro kinetics and biological impact of nebulized trehalose on human bronchial epithelium. Food and Chemical Toxicology, 2021, 157, 112577.	1.8	5
5	A meta-analysis of microRNAs expressed in human aerodigestive epithelial cultures and their role as potential biomarkers of exposure response to nicotine-containing products. Toxicology Reports, 2020, 7, 1282-1295.	1.6	2
6	Comparison of the basic morphology and function of 3D lung epithelial cultures derived from several donors. Current Research in Toxicology, 2020, 1, 56-69.	1.3	17
7	Comparing the preclinical risk profile of inhalable candidate and potential candidate modified risk tobacco products: A bridging use case. Toxicology Reports, 2020, 7, 1187-1206.	1.6	8
8	Alternatives to Animal Use in Risk Assessment of Mixtures. International Journal of Toxicology, 2020, 39, 165-172.	0.6	9
9	Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.	0.9	123
10	State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. Toxicology Research and Application, 2020, 4, 239784732097975.	0.7	1
11	Application of a multi-layer systems toxicology framework for in vitro assessment of the biological effects of Classic Tobacco e-liquid and its corresponding aerosol using an e-cigarette device with MESHâ,,¢ technology. Archives of Toxicology, 2019, 93, 3229-3247.	1.9	26
12	A lower impact of an acute exposure to electronic cigarette aerosols than to cigarette smoke in human organotypic buccal and small airway cultures was demonstrated using systems toxicology assessment. Internal and Emergency Medicine, 2019, 14, 863-883.	1.0	30
13	New approaches to risk assessment of chemical mixtures. Toxicology Research and Application, 2019, 3, 239784731882076.	0.7	13
14	Optimization of a NovelIn SituHybridization Technology on 3D Organotypic Cell Cultures. Applied in Vitro Toxicology, 2019, 5, 75-85.	0.6	2
15	Assessment of a 72-hour repeated exposure to Swedish snus extract and total particulate matter from 3R4F cigarette smoke on gingival organotypic cultures. Food and Chemical Toxicology, 2019, 125, 252-270.	1.8	8
16	Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: A systems toxicology assessment. Food and Chemical Toxicology, 2018, 115, 109-126.	1.8	25
17	Assessment of the impact of aerosol from a potential modified risk tobacco product compared with cigarette smoke on human organotypic oral epithelial cultures under different exposure regimens. Food and Chemical Toxicology, 2018, 115, 148-169.	1.8	26
18	A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab on A Chip, 2018, 18, 3814-3829.	3.1	132

ANITA ISKANDAR

#	Article	IF	CITATIONS
19	Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicology in Vitro, 2018, 52, 131-145.	1.1	66
20	A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures. Toxicology in Vitro, 2017, 39, 29-51.	1.1	49
21	Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicology Research, 2017, 6, 631-653.	0.9	24
22	Comparative effects of a candidate modified-risk tobacco product Aerosol and cigarette smoke on human organotypic small airway cultures: a systems toxicology approach. Toxicology Research, 2017, 6, 930-946.	0.9	21
23	Organs-on-a-chip. Toxicology Research and Application, 2017, 1, 239784731772635.	0.7	21
24	Systems Toxicology meta-analysis: Impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on organotypic aerodigestive tract cultures. Toxicology Letters, 2017, 280, S262-S263.	0.4	0
25	3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 23-48.	0.9	44
26	A framework for <i>in vitro</i> systems toxicology assessment of e-liquids. Toxicology Mechanisms and Methods, 2016, 26, 392-416.	1.3	67
27	β-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor α7 Signaling. Cancer Prevention Research, 2016, 9, 875-886.	0.7	42
28	Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chemical Research in Toxicology, 2016, 29, 1252-1269.	1.7	49
29	Construction of biological networks from unstructured information based on a semi-automated curation workflow. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav057.	1.4	33
30	Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke. Journal of Visualized Experiments, 2015, , .	0.2	29
31	Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflammation Research, 2015, 64, 471-486.	1.6	17
32	A crowd-sourcing approach for the construction of species-specific cell signaling networks. Bioinformatics, 2015, 31, 484-491.	1.8	10
33	Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts. Toxicological Sciences, 2015, 147, 207-221.	1.4	51
34	Xenobiotic Metabolism Activation as a Biomarker of Cigarette Smoke Exposure Response. Methods in Pharmacology and Toxicology, 2015, , 285-315.	0.1	0
35	Toxicity of aerosols of nicotine and pyruvic acid (separate and combined) in Sprague–Dawley rats in a 28-day OECD 412 inhalation study and assessment of systems toxicology. Inhalation Toxicology, 2015, 27, 405-431.	0.8	37
36	Abstract B1-19: Computable cancer hallmarks - The construction of novel computable biological network models reflecting causal mechanisms of cancer hallmarks. , 2015, , .		0

ANITA ISKANDAR

#	Article	IF	CITATIONS
37	Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model. Interdisciplinary Toxicology, 2014, 7, 73-84.	1.0	13
38	Case study: the role of mechanistic network models in systems toxicology. Drug Discovery Today, 2014, 19, 183-192.	3.2	63
39	<i>In vitro</i> systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicology Mechanisms and Methods, 2014, 24, 470-487.	1.3	50
40	β-Cryptoxanthin Restores Nicotine-Reduced Lung SIRT1 to Normal Levels and Inhibits Nicotine-Promoted Lung Tumorigenesis and Emphysema in A/J Mice. Cancer Prevention Research, 2013, 6, 309-320.	0.7	59
41	Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues. BioMed Research International, 2013, 2013, 1-14.	0.9	51
42	Modulations of sirtuin 1 protein levels by nicotine and β―cryptoxanthin can be mediated by miRâ€34a in A/J mice lung cancer model. FASEB Journal, 2013, 27, 32.2.	0.2	0
43	βâ€Cryptoxanthin supplementation inhibits carcinogenâ€initiated and nicotineâ€promoted lung tumor development in AJ mice. FASEB Journal, 2012, 26, 27.2.	0.2	0
44	3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product_suppl. ALTEX: Alternatives To Animal Experimentation, 0, , .	0.9	6