Mohammad Musarraf Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045495/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-enzymatic simultaneous detection of <scp>l</scp> -glutamic acid and uric acid using mesoporous Co ₃ O ₄ nanosheets. RSC Advances, 2016, 6, 80511-80521.	1.7	148
2	Arsenic sensor development based on modification with (<i>E</i>)- <i>N</i> ′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. New Journal of Chemistry, 2019, 43, 9066-9075.	1.4	148
3	Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. Journal of Environmental Sciences, 2017, 53, 27-38.	3.2	100
4	A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Advances, 2016, 6, 65338-65348.	1.7	74
5	Hg ²⁺ Sensor Development Based on (<i>E</i>)- <i>N</i> ′-Nitrobenzylidene-Benzenesulfonohydrazide (NBBSH) Derivatives Fabricated on a Glassy Carbon Electrode with a Nafion Matrix. ACS Omega, 2017, 2, 420-431.	1.6	58
6	Bilirubin sensor based on CuO-CdO composites deposited in a nafion/glassy carbon electrode matrixes. Progress in Natural Science: Materials International, 2017, 27, 566-573.	1.8	52
7	Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS ONE, 2017, 12, e0177817.	1.1	47
8	Sensitive L-leucine sensor based on a glassy carbon electrode modified with SrO nanorods. Mikrochimica Acta, 2016, 183, 3265-3273.	2.5	46
9	Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety. PLoS ONE, 2016, 11, e0166265.	1.1	45
10	Development of selective Co2+ ionic sensor based on various derivatives of benzenesulfonohydrazide (BSH) compound: An electrochemical approach. Chemical Engineering Journal, 2018, 339, 133-143.	6.6	44
11	A glutathione biosensor based on a glassy carbon electrode modified with CdO nanoparticle-decorated carbon nanotubes in a nafion matrix. Mikrochimica Acta, 2016, 183, 3255-3263.	2.5	42
12	Hydrothermally prepared Ag2O/CuO nanomaterial for an efficient chemical sensor development for environmental remediation. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 1-9.	1.7	40
13	Fabrication of a Ga ³⁺ sensor probe based on methoxybenzylidenebenzenesulfonohydrazide (MBBSH) by an electrochemical approach. New Journal of Chemistry, 2018, 42, 1169-1180.	1.4	36
14	Trivalent Y3+ ionic sensor development based on (E)-Methyl-N′-nitrobenzylidene-benzenesulfonohydrazide (MNBBSH) derivatives modified with nafion matrix. Scientific Reports, 2017, 7, 5832.	1.6	35
15	Ultrasensitive and label-free detection of creatine based on CdO nanoparticles: a real sample approach. New Journal of Chemistry, 2017, 41, 6667-6677.	1.4	32
16	<scp>d</scp> -Glucose sensor based on ZnO·V ₂ O ₅ NRs by an enzyme-free electrochemical approach. RSC Advances, 2019, 9, 31670-31682.	1.7	32
17	Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchemical Journal, 2020, 159, 105534.	2.3	31
18	Sensitive and selective heavy metal ion, Mn2+ sensor development based on the synthesized (E)-Nâ€2-chlorobenzylidene-benzenesulfonohydrazide (CBBSH) molecules modified with nafion matrix. Journal of Industrial and Engineering Chemistry, 2018, 63, 312-321.	2.9	28

#	Article	IF	CITATIONS
19	A non-enzymatic electrochemical approach for <scp>l</scp> -lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. New Journal of Chemistry, 2020, 44, 9775-9787.	1.4	24
20	Electrochemical Detection of Ni ²⁺ lons Using Synthesized (E)â€N'â€Chlorobenzylideneâ€4â€methylbenzenesulfonohydrazide Derivatives Modified with a Nafion Matrix. ChemistrySelect, 2017, 2, 7455-7464.	. 0.7	23
21	A Ce ²⁺ sensor based on napthalen-1-yl-methylene-benzenesulfonohydrazide (NMBSH) molecules: ecological sample analysis. New Journal of Chemistry, 2018, 42, 4465-4473.	1.4	21
22	Synthesis, characterization, and crystal structure of (E)-Nʹ-(4-Bromobenzylidene)-benzenesulfonohydrazide and its application as a sensor of chromium ion detection from environmental samples. Journal of Molecular Structure, 2020, 1207, 127810.	1.8	20
23	A potent synthesis and supramolecular synthon hierarchy percipience of (E)-NÊ1-(Napthalen-1-yl-methylene)-benzenesulfonohydrazide and 1-Napthaldehyde: A combined experimental and DFT studies. Journal of Molecular Structure, 2020, 1221, 128797.	1.8	19
24	The synthesis and application of (<i>E</i>)- <i>N</i> ′-(benzo[<i>d</i>]dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide for the detection of carcinogenic lead. RSC Advances, 2020, 10, 5316-5327.	1.7	19
25	Constituents of Erythrina - a Potential Source of Secondary Metabolities: A Review. Bangladesh Pharmaceutical Journal, 2016, 19, 237-253.	0.1	18
26	Simultaneous detection of <scp>l</scp> -aspartic acid and glycine using wet-chemically prepared Fe ₃ O ₄ @ZnO nanoparticles: real sample analysis. RSC Advances, 2020, 10, 19276-19289.	1.7	18
27	Enzyme-free detection of uric acid using hydrothermally prepared CuÓ·Fe ₂ O ₃ nanocrystals. New Journal of Chemistry, 2020, 44, 19581-19590.	1.4	15
28	An enzyme free detection of L-Glutamic acid using deposited CuO.GdO nanospikes on a flat glassy carbon electrode. Surfaces and Interfaces, 2020, 20, 100617.	1.5	13
29	A Thallium Ion Sensor Development Based on the Synthesized (E)â€N′â€(Methoxybenzylidene)â€4― Methylbenzenesulfonohydrazide Derivatives: Environmental Sample Analysis. ChemistrySelect, 2019, 4, 10543-10549.	0.7	10
30	Synthesis, characterization, and physicochemical studies of the synthesized dimethoxy-Nʹ-(phenylsulfonyl)-benzenesulfonohydrazide derivatives and used as a probe for calcium ion capturing: Natural sample analysis. Journal of Molecular Structure, 2020, 1214, 128243.	1.8	8
31	An enzyme free simultaneous detection of \hat{I}^3 -amino-butyric acid and testosterone based on copper oxide nanoparticles. RSC Advances, 2021, 11, 20794-20805.	1.7	7
32	Development of a L•ysteine Sensor Based on Thallium Oxide Coupled Multiâ€walled Carbon Nanotube Nanocomposites with Electrochemical Approach. Chemistry - an Asian Journal, 2022, 17, .	1.7	7
33	Influence of chain length on the activity of tripeptidomimetic antagonists for CXC chemokine receptor 4 (CXCR4). Bioorganic and Medicinal Chemistry, 2017, 25, 646-657.	1.4	6
34	A Short Review on Phytoconstituents from Genus Albizzia and Erythrina. Bangladesh Pharmaceutical Journal, 2018, 21, 160-172.	0.1	6
35	A Further Comprehensive Review on the Phytoconstituents from the Genus Erythrina. Bangladesh Pharmaceutical Journal, 2020, 23, 65-77.	0.1	4
36	A Comprehensive Review on the Phytoconstituents from Six Species of the Genus Amaranthus. Bangladesh Pharmaceutical Journal, 2019, 22, 117-124.	0.1	3

MOHAMMAD MUSARRAF

#	Article	IF	CITATIONS
37	Sensitive detection of Penicillin-G chemical using SnO2.YbO nanomaterials by electrochemical approach. Journal of Saudi Chemical Society, 2022, 26, 101392.	2.4	3
38	A Mini Review on the Chemical Compounds of the Genus Acacia. Bangladesh Pharmaceutical Journal, 2019, 22, 235-242.	0.1	2
39	Glassy Carbon Electrodes Decorated with HgO/CNT NanocompositeÂand Modified with a Conducting Polymer Matrix for Enzymeâ€Free Ascorbic Acid Detection. ChemistrySelect, 2022, 7, .	0.7	2
40	Comparative Evaluation of HPMC, PVA and Gelatin as Matrices for Controlled Release Drug Delivery. Stamford Journal of Pharmaceutical Sciences, 2010, 2, 51-55.	0.3	1
41	Secondary Metabolites from Some Species of Albizzia: A Review. Bangladesh Pharmaceutical Journal, 2016, 19, 1-8.	0.1	1
42	Detection of Acetylcholine in an Enzymeâ€Free System Based on a GCE/V2O5 NRs/BPM Modified Sensor. ChemistrySelect, 2022, 7, .	0.7	1
43	Antimicrobial activity of <i>n</i> -hexane and Ethyl acetate extracts of <i>Erythrina stricta</i> Roxb. Bangladesh Journal of Microbiology, 2011, 27, 65-66.	0.2	0