
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045255/publications.pdf Version: 2024-02-01



Комстнаци

| #  | Article                                                                                                                                                                                         | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. Journal of Energy Chemistry, 2022, 65, 34-47.                                       | 7.1  | 96        |
| 2  | Enhanced performance of the CeO2MgO oxygen carrier by NiO for chemical looping CO2 splitting.<br>Fuel Processing Technology, 2022, 225, 107045.                                                 | 3.7  | 10        |
| 3  | Hydrogen generation from water splitting over polyfunctional perovskite oxygen carriers by using coke oven gas as reducing agent. Applied Catalysis B: Environmental, 2022, 301, 120778.        | 10.8 | 32        |
| 4  | Enhanced performance of red mud for chemical-looping combustion of coal by the modification of transition metal oxides. Journal of the Energy Institute, 2022, 102, 22-31.                      | 2.7  | 15        |
| 5  | Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane. Fuel Processing Technology, 2022, 232, 107268.                                       | 3.7  | 12        |
| 6  | Bifunctional Mn-Cu-CeOx/γ-Al2O3 catalysts for low-temperature simultaneous removal of NOx and CO.<br>Fuel, 2022, 321, 124050.                                                                   | 3.4  | 20        |
| 7  | Promotional effect of Sn additive on the chlorine resistance over SnMnOx/LDO catalysts for synergistic removal of NOx and <i>o</i> -DCB. Catalysis Science and Technology, 2022, 12, 3863-3873. | 2.1  | 9         |
| 8  | Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts. Journal of Energy Chemistry, 2022, 72, 465-478.                                        | 7.1  | 17        |
| 9  | Optimization of Ni-Based Catalysts for Dry Reforming of Methane via Alloy Design: A Review. Energy<br>& Fuels, 2022, 36, 5102-5151.                                                             | 2.5  | 29        |
| 10 | Catalytic combustion of lean methane over MnCo2O4/SiC catalysts: Enhanced activity and sulfur resistance. Fuel, 2022, 323, 124399.                                                              | 3.4  | 13        |
| 11 | Enhanced performance of LaFeO3 oxygen carriers by NiO for chemical looping partial oxidation of methane. Fuel Processing Technology, 2022, 236, 107396.                                         | 3.7  | 22        |
| 12 | Hydrogen production via chemical looping reforming of coke oven gas. Green Energy and Environment, 2021, 6, 678-692.                                                                            | 4.7  | 30        |
| 13 | Limonite as a source of solid iron in the crystallization of scorodite aiming at arsenic removal from smelting wastewater. Journal of Cleaner Production, 2021, 278, 123552.                    | 4.6  | 28        |
| 14 | Design of hybrid oxygen carriers with CeO2 particles on MnCo2O4 microspheres for chemical looping combustion. Chemical Engineering Journal, 2021, 404, 126554.                                  | 6.6  | 25        |
| 15 | Chemical-looping reforming of methane over La-Mn-Fe-O oxygen carriers: Effect of calcination temperature. Chemical Engineering Science, 2021, 229, 116085.                                      | 1.9  | 18        |
| 16 | Thermodynamic evolution of magnetite oxygen carrier via chemical looping reforming of methane.<br>Journal of Natural Gas Science and Engineering, 2021, 85, 103704.                             | 2.1  | 8         |
| 17 | NiO and CuO coated monolithic oxygen carriers for chemical looping combustion of methane.<br>Journal of the Energy Institute, 2021, 94, 199-209.                                                | 2.7  | 23        |
| 18 | Electrochemical fixation of CO <sub>2</sub> over a Mo plate to prepare a Mo <sub>2</sub> C film for electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 4963-4969.     | 3.2  | 11        |

| #  | Article                                                                                                                                                                                                                                                       | IF                  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 19 | Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. Journal of<br>Cleaner Production, 2021, 289, 125756.                                                                                                                   | 4.6                 | 12        |
| 20 | Enhanced activity of La1-xMnCuxO3 perovskite oxides for chemical looping steam methane reforming.<br>Fuel Processing Technology, 2021, 215, 106744.                                                                                                           | 3.7                 | 27        |
| 21 | Optimized Ni-based catalysts for methane reforming with O2-containing CO2. Applied Catalysis B:<br>Environmental, 2021, 289, 120033.                                                                                                                          | 10.8                | 31        |
| 22 | Enhanced Resistance to Carbon Deposition over<br>La <i><sub>x</sub></i> Ce <sub>1–<i>x</i></sub> Fe <i><sub>x</sub></i> Ni <sub>1–<i>x</i></sub> O <sub>3<br/>Oxygen Carrier for Chemical Looping Reforming. Energy &amp; Fuels, 2021, 35, 15867-15878.</sub> | 3< <b>&amp;e</b> b> | 7         |
| 23 | Enhanced resistance to carbon deposition in chemical-looping combustion of methane: Synergistic effect of different oxygen carriers via sequence filling. Chemical Engineering Journal, 2021, 421, 129776.                                                    | 6.6                 | 20        |
| 24 | Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate. Environmental Pollution, 2021, 287, 117484.                                                                                           | 3.7                 | 9         |
| 25 | Self-generated Ni nanoparticles/LaFeO3 heterogeneous oxygen carrier for robust CO2 utilization under a cyclic redox scheme. Nano Energy, 2021, 89, 106379.                                                                                                    | 8.2                 | 25        |
| 26 | Density functional theory studies of transition metal carbides and nitrides as electrocatalysts.<br>Chemical Society Reviews, 2021, 50, 12338-12376.                                                                                                          | 18.7                | 103       |
| 27 | Enhanced propane and carbon monoxide oxidation activity by structural interactions of CeO2 with MnOx/Nb2O5-x catalysts. Applied Catalysis B: Environmental, 2020, 267, 118363.                                                                                | 10.8                | 26        |
| 28 | Chemical‣ooping Conversion of Methane: A Review. Energy Technology, 2020, 8, 1900925.                                                                                                                                                                         | 1.8                 | 87        |
| 29 | Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. RSC Advances, 2020, 10, 29-42.                                                                                                                                         | 1.7                 | 32        |
| 30 | Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment. Applied Energy, 2020, 261, 114437.                                                                                                                | 5.1                 | 26        |
| 31 | Evaluation of Fe substitution in perovskite LaMnO3 for the production of high purity syngas and hydrogen. Journal of Power Sources, 2020, 449, 227505.                                                                                                        | 4.0                 | 35        |
| 32 | Strong Evidence of the Role of H2O in Affecting Methanol Selectivity from CO2 Hydrogenation over Cu-ZnO-ZrO2. CheM, 2020, 6, 419-430.                                                                                                                         | 5.8                 | 130       |
| 33 | Layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers for chemical looping reforming. Chinese<br>Journal of Chemical Engineering, 2020, 28, 2668-2676.                                                                                                    | 1.7                 | 11        |
| 34 | Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion. Applied Energy, 2020, 277, 115590.                                                                                                                 | 5.1                 | 39        |
| 35 | Interfacial Active Sites for CO2 Assisted Selective Cleavage of C–C/C–H Bonds in Ethane. CheM, 2020, 6,<br>2703-2716.                                                                                                                                         | 5.8                 | 57        |
| 36 | Encapsulated Co3O4/(SiAl@Al2O3) thermal storage functional catalysts for catalytic combustion of lean methane. Applied Thermal Engineering, 2020, 181, 116012.                                                                                                | 3.0                 | 18        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Highly efficient reduction of O2-containing CO2 via chemical looping based on perovskite nanocomposites. Nano Energy, 2020, 78, 105320.                                                                                                                                        | 8.2 | 32        |
| 38 | Ultra-Fine CeO <sub>2</sub> Particles Triggered Strong Interaction with LaFeO <sub>3</sub><br>Framework for Total and Preferential CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12,<br>42274-42284.                                                                 | 4.0 | 24        |
| 39 | Moderate-temperature chemical looping splitting of CO2 and H2O for syngas generation. Chemical Engineering Journal, 2020, 397, 125393.                                                                                                                                         | 6.6 | 19        |
| 40 | Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag. Journal of Cleaner Production, 2020, 270, 122428.                                                                                                                         | 4.6 | 51        |
| 41 | Ultrahigh photo-stable all-inorganic perovskite nanocrystals and their robust random lasing.<br>Nanoscale Advances, 2020, 2, 888-895.                                                                                                                                          | 2.2 | 6         |
| 42 | Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2. Chemical Engineering Journal, 2020, 388, 124190.                                                                                                       | 6.6 | 39        |
| 43 | Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel. Chemical Engineering Journal, 2020, 394, 124833.                                                                                             | 6.6 | 86        |
| 44 | Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion.<br>Energy, 2020, 197, 117202.                                                                                                                                                     | 4.5 | 36        |
| 45 | Chemical Looping Conversion of Gaseous and Liquid Fuels for Chemical Production: A Review. Energy<br>& Fuels, 2020, 34, 5381-5413.                                                                                                                                             | 2.5 | 95        |
| 46 | Hydrostatic pressures effect on structure stability, electronic, optical and elastic properties of<br>rutile VO <sub>2</sub> doped TiO <sub>2</sub> by density functional theory investigation. Materials<br>Research Express, 2019, 6, 0965c2.                                | 0.8 | 1         |
| 47 | Controlled synthesis of α-Fe2O3 hollows from β-FeOOH rods. Chemical Physics Letters, 2019, 731, 136623.                                                                                                                                                                        | 1.2 | 11        |
| 48 | CO <sub>2</sub> Hydrogenation to Methanol over ZrO <sub>2</sub> -Containing Catalysts: Insights into ZrO <sub>2</sub> 2 Induced Synergy. ACS Catalysis, 2019, 9, 7840-7861.                                                                                                    | 5.5 | 253       |
| 49 | Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane. Applied Energy, 2019, 253, 113534.                                                                                                                                    | 5.1 | 46        |
| 50 | Effect of Preparation Method on the Structural Characteristics of NiO-ZrO2 Oxygen Carriers for Chemical-looping Combustion. Chemical Research in Chinese Universities, 2019, 35, 1024-1031.                                                                                    | 1.3 | 5         |
| 51 | Chemical Looping Co-splitting of H <sub>2</sub> O–CO <sub>2</sub> for Efficient Generation of Syngas. ACS Sustainable Chemistry and Engineering, 2019, 7, 15452-15462.                                                                                                         | 3.2 | 37        |
| 52 | Ceria-nano supported copper oxide catalysts for CO preferential oxidation: Importance of oxygen species and metal-support interaction. Applied Surface Science, 2019, 494, 1166-1176.                                                                                          | 3.1 | 69        |
| 53 | Iron-rich copper ore as a promising oxygen carrier for chemical looping combustion of methane.<br>Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 204-213.                                                                                                   | 2.7 | 20        |
| 54 | Enhanced CH <sub>4</sub> and CO Oxidation over<br>Ce <sub>1–<i>x</i></sub> Fe <i><sub>x</sub></i> O <sub>2â^î^</sub> Hybrid Catalysts by Tuning the Lattice<br>Distortion and the State of Surface Iron Species. ACS Applied Materials & Interfaces, 2019, 11,<br>19227-19241. | 4.0 | 64        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Modified Al@Al2O3 phase change materials by carbon via in-situ catalytic decomposition of methane.<br>Solar Energy Materials and Solar Cells, 2019, 200, 109924.                                                                | 3.0  | 17        |
| 56 | Sn separation from Sn-bearing iron concentrates by roasting with waste tire rubber in N2 + CO +â€9<br>mixed gases. Journal of Hazardous Materials, 2019, 371, 440-448.                                                          | %CO2 | 12        |
| 57 | Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 2019, 10, 1166.                                                                                 | 5.8  | 258       |
| 58 | Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane. Applied Surface Science, 2019, 481, 151-160.                                                        | 3.1  | 32        |
| 59 | Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Water Research, 2019, 157, 269-280.                                                                                  | 5.3  | 46        |
| 60 | Effect of Fe doping concentration on photocatalytic performance of CeO2 from DFT insight into analysis. AIP Advances, 2019, 9, .                                                                                                | 0.6  | 10        |
| 61 | Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane:<br>Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Applied Catalysis B:<br>Environmental, 2019, 244, 438-447. | 10.8 | 64        |
| 62 | The mechanism of photocatalyst and the effects of co-doping CeO2 on refractive index and reflectivity from DFT calculation. Computational Materials Science, 2019, 158, 197-208.                                                | 1.4  | 21        |
| 63 | Synergy effects of combined red muds as oxygen carriers for chemical looping combustion of methane. Chemical Engineering Journal, 2018, 341, 588-600.                                                                           | 6.6  | 73        |
| 64 | Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling. Chemical Engineering Science, 2018, 179, 92-103.                                             | 1.9  | 56        |
| 65 | Pyrolysis of arsenic-bearing gypsum sludge being substituted for calcium flux in smelting process.<br>Journal of Analytical and Applied Pyrolysis, 2018, 130, 19-28.                                                            | 2.6  | 19        |
| 66 | Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 716-728.                                      | 1.2  | 5         |
| 67 | Phase transformation of Sn in tin-bearing iron concentrates by roasting with FeS2 in CO-CO2 mixed gases and its effects on Sn separation. Journal of Alloys and Compounds, 2018, 750, 8-16.                                     | 2.8  | 13        |
| 68 | DFT insights into oxygen vacancy formation and CH <sub>4</sub> activation over CeO <sub>2</sub> surfaces modified by transition metals (Fe, Co and Ni). Physical Chemistry Chemical Physics, 2018, 20, 11912-11929.             | 1.3  | 64        |
| 69 | Ce1-xFexO2-δ catalysts for catalytic methane combustion: Role of oxygen vacancy and structural dependence. Catalysis Today, 2018, 318, 73-85.                                                                                   | 2.2  | 55        |
| 70 | Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics. Applied Energy, 2018, 211, 1-14.                                                                           | 5.1  | 93        |
| 71 | Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences. Applied Energy, 2018, 230, 696-711.                                                          | 5.1  | 22        |
| 72 | Facile Synthesis of Al@Al <sub>2</sub> O <sub>3</sub> Microcapsule for High-Temperature Thermal<br>Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 13226-13236.                                             | 3.2  | 30        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Perovskites as Geo-inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A<br>Perspective. ACS Catalysis, 2018, 8, 8213-8236.                                                                                         | 5.5  | 152       |
| 74 | Separation of As from high As-Sb dust using Fe2O3 as a fixative under O2-N2 atmosphere. Separation and Purification Technology, 2018, 194, 81-88.                                                                                               | 3.9  | 17        |
| 75 | Effects of rare-earth (Nd, Er and Y) doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan (CH3SH) decomposition. Applied Catalysis A: General, 2017, 533, 66-74.                                                    | 2.2  | 41        |
| 76 | Synthesis, CO2-tolerance and rate-determining step of Nb-doped<br>Ce0.8Gd0.2O2â~δ–Pr0.6Sr0.4Co0.5Fe0.5O3â~δ ceramic membranes. Ceramics International, 2017, 43,<br>6477-6486.                                                                  | 2.3  | 22        |
| 77 | Enhanced activity and stability of Sm-doped HZSM-5 zeolite catalysts for catalytic methyl mercaptan<br>(CH 3 SH) decomposition. Chemical Engineering Journal, 2017, 317, 60-69.                                                                 | 6.6  | 41        |
| 78 | Effect of transition metal Fe adsorption on CeO 2 (110) surface in the methane activation and oxygen vacancy formation: A density functional theory study. Applied Surface Science, 2017, 416, 547-564.                                         | 3.1  | 41        |
| 79 | Synthesis of mesoporous PrxZr1â^'xO2â^'δ solid solution with high thermal stability for catalytic soot oxidation. Journal of Industrial and Engineering Chemistry, 2017, 54, 126-136.                                                           | 2.9  | 16        |
| 80 | CO Oxidation on Au/α-Fe <sub>2</sub> O <sub>3</sub> -Hollow Catalysts: General Synthesis and Structural Dependence. Journal of Physical Chemistry C, 2017, 121, 12696-12710.                                                                    | 1.5  | 31        |
| 81 | Enhanced Performance of Chemical Looping Combustion of CO with CaSO <sub>4</sub> -CaO Oxygen<br>Carrier. Energy & Fuels, 2017, 31, 5255-5265.                                                                                                   | 2.5  | 14        |
| 82 | Modification of KNO <sub>3</sub> on the reducibility and reactivity of<br>Fe <sub>2</sub> O <sub>3</sub> â€based oxygen carriers for chemicalâ€looping combustion of methane.<br>Canadian Journal of Chemical Engineering, 2017, 95, 1569-1578. | 0.9  | 15        |
| 83 | A yolk/shell strategy for designing hybrid phase change materials for heat management in catalytic reactions. Journal of Materials Chemistry A, 2017, 5, 24232-24246.                                                                           | 5.2  | 52        |
| 84 | Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles. Energy, 2017, 140, 530-545.                                                                | 4.5  | 23        |
| 85 | Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers. Chemical Engineering Journal, 2017, 328, 382-396.                                        | 6.6  | 30        |
| 86 | Stochastic ecological kinetics of regime shifts in a timeâ€delayed lake eutrophication ecosystem.<br>Ecosphere, 2017, 8, e01805.                                                                                                                | 1.0  | 36        |
| 87 | Characteristics of CaS–CaO Oxidation for Chemical Looping Combustion with a<br>CaSO <sub>4</sub> -Based Oxygen Carrier. Energy & Fuels, 2017, 31, 13842-13851.                                                                                  | 2.5  | 12        |
| 88 | Water splitting for hydrogen generation over lanthanum-calcium-iron perovskite-type membrane<br>driven by reducing atmosphere. International Journal of Hydrogen Energy, 2017, 42, 19776-19787.                                                 | 3.8  | 10        |
| 89 | Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Applied Catalysis B: Environmental, 2017, 202, 51-63.                                                                                | 10.8 | 306       |
| 90 | Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO. Chemical Research in<br>Chinese Universities, 2017, 33, 979-985.                                                                                                    | 1.3  | 2         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                              | IF                                                                       | CITATIONS                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|
| 91  | A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles. Energy, 2016, 116, 661-676.                                                                                                                                                                                  | 4.5                                                                      | 39                         |
| 92  | Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides. Applied Surface Science, 2016, 390, 513-525.                                                                                                                                                                                   | 3.1                                                                      | 80                         |
| 93  | Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity. Chinese Journal of Catalysis, 2016, 37, 908-922.                                                                                                                                                                                                             | 6.9                                                                      | 41                         |
| 94  | Structure dependence and reaction mechanism of CO oxidation: A model study on macroporous CeO2 and CeO2-ZrO2 catalysts. Journal of Catalysis, 2016, 344, 365-377.                                                                                                                                                                                                    | 3.1                                                                      | 148                        |
| 95  | Performance of cubic ZrO2 doped CeO2: First-principles investigation on elastic, electronic and optical properties of Ce1â° Zr O2. Journal of Alloys and Compounds, 2016, 671, 208-219. A DFT study of the structural, electronic and optical properties of transition metal doped fluorite                                                                          | 2.8                                                                      | 39                         |
| 96  | oxides: <mml:math <br="" altimg="si0010.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:msub><mml:mrow><mml:mi>Ce</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><td>/mml:mn&gt;<br/>nsub&gt;<mr< td=""><td>nl:msub&gt;<mr< td=""></mr<></td></mr<></td></mml:msub></mml:math> | /mml:mn><br>nsub> <mr< td=""><td>nl:msub&gt;<mr< td=""></mr<></td></mr<> | nl:msub> <mr< td=""></mr<> |
| 97  | 231-232, 68-79.<br>Enhanced Activity of CeO <sub>2</sub> –ZrO <sub>2</sub> Solid Solutions for Chemical-Looping<br>Reforming of Methane via Tuning the Macroporous Structure. Energy & Fuels, 2016, 30, 638-647.                                                                                                                                                     | 2.5                                                                      | 44                         |
| 98  | Bulk monolithic Ce–Zr–Fe–O/Al 2 O 3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier. Applied Energy, 2016, 163, 19-31.                                                                                                                                                                                       | 5.1                                                                      | 47                         |
| 99  | Synthesis gas generation by chemical-looping selective oxidation ofÂmethane using Pr 1â^'x Zr x O 2â^'î<br>oxygen carriers. Journal of the Energy Institute, 2016, 89, 745-754.                                                                                                                                                                                      | 2.7                                                                      | 10                         |
| 100 | ICOPE-15-C141 CO formation by carbon oxidation over reduced CeO_2-Fe_2O_3 catalysts. The<br>Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12,<br>_ICOPE-15ICOPE-15                                                                                                                                                            | 0.0                                                                      | 0                          |
| 101 | Microstructure and oxygen evolution of Fe–Ce mixed oxides by redox treatment. Applied Surface Science, 2014, 289, 378-383.                                                                                                                                                                                                                                           | 3.1                                                                      | 37                         |
| 102 | Enhanced reducibility and redox stability of Fe <sub>2</sub> O <sub>3</sub> in the presence of CeO <sub>2</sub> nanoparticles. RSC Advances, 2014, 4, 47191-47199.                                                                                                                                                                                                   | 1.7                                                                      | 70                         |
| 103 | Characteristic of macroporous CeO2-ZrO2 oxygen carrier for chemical-looping steam methane reforming. Journal of Rare Earths, 2014, 32, 842-848.                                                                                                                                                                                                                      | 2.5                                                                      | 30                         |
| 104 | Structure and catalytic property of CeO2-ZrO2-Fe2O3 mixed oxide catalysts for diesel soot combustion: Effect of preparation method. Journal of Rare Earths, 2014, 32, 817-823.                                                                                                                                                                                       | 2.5                                                                      | 21                         |
| 105 | Chemical-Looping Steam Methane Reforming over a CeO <sub>2</sub> –Fe <sub>2</sub> O <sub>3</sub><br>Oxygen Carrier: Evolution of Its Structure and Reducibility. Energy & Fuels, 2014, 28, 754-760.                                                                                                                                                                  | 2.5                                                                      | 137                        |
| 106 | <i>In Situ</i> Embedding of Mg <sub>2</sub> NiH <sub>4</sub> and YH <sub>3</sub> Nanoparticles into<br>Bimetallic Hydride NaMgH <sub>3</sub> to Inhibit Phase Segregation for Enhanced Hydrogen Storage.<br>Journal of Physical Chemistry C, 2014, 118, 23635-23644.                                                                                                 | 1.5                                                                      | 33                         |
| 107 | Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation. Journal of Rare Earths, 2014, 32, 824-830.                                                                                                                                                                                                                                               | 2.5                                                                      | 29                         |
| 108 | CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting.<br>International Journal of Hydrogen Energy, 2014, 39, 13381-13388.                                                                                                                                                                                                 | 3.8                                                                      | 50                         |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Chemical-looping steam methane reforming over macroporous CeO2–ZrO2 solid solution: Effect of calcination temperature. International Journal of Hydrogen Energy, 2014, 39, 13361-13368.        | 3.8  | 61        |
| 110 | Syngas production from methane over CeO2-Fe2O3 mixed oxides using a chemical-looping method.<br>Kinetics and Catalysis, 2013, 54, 326-333.                                                     | 0.3  | 20        |
| 111 | Oxygen release–absorption properties and structural stability of Ce0.8Fe0.2O2â^'x. Journal of<br>Materials Science, 2013, 48, 5733-5743.                                                       | 1.7  | 11        |
| 112 | Anomalous transport controlled via potential fluctuations. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 2623-2630.                                                        | 1.2  | 5         |
| 113 | Ce–Fe oxygen carriers for chemical-looping steam methane reforming. International Journal of<br>Hydrogen Energy, 2013, 38, 4492-4501.                                                          | 3.8  | 191       |
| 114 | Modification of CeO2 on the redox property of Fe2O3. Materials Letters, 2013, 93, 129-132.                                                                                                     | 1.3  | 45        |
| 115 | Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers.<br>Journal of Chemistry, 2013, 2013, 1-8.                                                        | 0.9  | 11        |
| 116 | Enhancement of Reducibility and Oxygen Storage Capacity (OSC) of Ce–Fe Mixed Oxides by Repetitive<br>Redox Treatment. Chemistry Letters, 2012, 41, 837-838.                                    | 0.7  | 2         |
| 117 | Reaction characteristics of chemical-looping steam methane reforming over a Ce–ZrO2 solid solution oxygen carrier. Mendeleev Communications, 2011, 21, 221-223.                                | 0.6  | 27        |
| 118 | Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier. Journal of Natural Gas Chemistry, 2011, 20, 281-286.                                     | 1.8  | 48        |
| 119 | Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce–Fe<br>mixed oxides. Chemical Engineering Journal, 2011, 173, 574-582.                         | 6.6  | 83        |
| 120 | Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: Effect of calcination temperature. International Journal of Hydrogen Energy, 2011, 36, 3471-3482. | 3.8  | 118       |
| 121 | Syngas production from methane and air via a redox process using Ce–Fe mixed oxides as oxygen carriers. Applied Catalysis B: Environmental, 2010, 97, 361-372.                                 | 10.8 | 183       |
| 122 | Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides.<br>Chemical Engineering Journal, 2010, 156, 512-518.                                          | 6.6  | 125       |
| 123 | Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier. Journal of Rare Earths, 2010, 28, 907-913.                                             | 2.5  | 81        |
| 124 | Preparation and characterization of Ce-Fe-Zr-O(x)/MgO complex oxides for selective oxidation of methane to synthesize gas. Journal of Rare Earths, 2010, 28, 316-321.                          | 2.5  | 14        |
| 125 | Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas. Journal of Rare Earths, 2010, 28, 560-565.                                                        | 2.5  | 52        |
| 126 | Preparation and characterization of Ce1-x NixO2 as oxygen carrier for selective oxidation methane to syngas in absence of gaseous oxygen. Journal of Rare Earths, 2010, 28, 357-361.           | 2.5  | 37        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | C213 TWO-STEP STEAM REFORMING OF METHANE FOR HYDROGEN PRODUCTION : THERMODYNAMIC ANALYSIS AND REACTION SYSTEM SELECTION(Hydrogen and Reforming-1). The Proceedings of the International Conference on Power Engineering (ICOPE), 2009, 2009.2, _2-2492-254 | 0.0 | 0         |
| 128 | Preparation and characterization of Ce1-Fe O2 complex oxides and its catalytic activity for methane selective oxidation. Journal of Rare Earths, 2008, 26, 245-249.                                                                                        | 2.5 | 61        |
| 129 | Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas. Journal of Rare Earths, 2008, 26, 705-710.                                                                                                          | 2.5 | 42        |