
Hameed A Al-Attar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>Polylactideâ€perylene</scp> derivative for blue biodegradable organic lightâ€emitting diodes. Polymer International, 2021, 70, 51-58.	1.6	8
2	Conformationally-restricted bicarbazoles with phenylene bridges displaying deep-blue emission and high triplet energies: systematic structure–property relationships. Physical Chemistry Chemical Physics, 2018, 20, 11867-11875.	1.3	10
3	Pyridylpyrazole N^N ligands combined with sulfonyl-functionalised cyclometalating ligands for blue-emitting iridium(<scp>iii</scp>) complexes and solution-processable PhOLEDs. Dalton Transactions, 2017, 46, 10996-11007.	1.6	17
4	Bright green PhOLEDs using cyclometalated diiridium(iii) complexes with bridging oxamidato ligands as phosphorescent dopants. Journal of Materials Chemistry C, 2017, 5, 6777-6789.	2.7	30
5	Sulfonyl-Substituted Heteroleptic Cyclometalated Iridium(III) Complexes as Blue Emitters for Solution-Processable Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 8612-8627.	1.9	32
6	Electric Field Induce Blue Shift and Intensity Enhancement in 2D Exciplex Organic Light Emitting Diodes; Controlling Electron–Hole Separation. Advanced Materials, 2016, 28, 8014-8020.	11.1	67
7	High efficiency OLEDs based on anthracene derivatives: The impact of electron donating and withdrawing group on the performance of OLED. Organic Electronics, 2016, 30, 149-157.	1.4	65
8	The role of exciplex states in phosphorescent OLEDs with poly(vinylcarbazole) (PVK) host. Organic Electronics, 2015, 20, 97-102.	1.4	21
9	Fluorene co-polymers with high efficiency deep-blue electroluminescence. Journal of Materials Chemistry C, 2015, 3, 2479-2483.	2.7	23
10	High brightness deep blue/violet fluorescent polymer light-emitting diodes (PLEDs). Journal of Materials Chemistry C, 2015, 3, 9664-9669.	2.7	29
11	Effect of PEDOT–PSS resistivity and work function on PLED performance. Organic Electronics, 2014, 15, 245-250.	1.4	32
12	Bimetallic Cyclometalated Iridium(III) Diastereomers with Nonâ€Innocent Bridging Ligands for Highâ€Efficiency Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2014, 53, 11616-11619.	7.2	65
13	Efficient deep blue fluorescent polymer light-emitting diodes (PLEDs). Journal of Materials Chemistry C, 2014, 2, 5587-5592.	2.7	38
14	Fabrication of ZnO nanorod/p-GaN high-brightness UV LED by microwave-assisted chemical bath deposition with Zn(OH)2–PVA nanocomposites as seed layer. Optical Materials, 2013, 35, 1035-1041.	1.7	24
15	Carbazole based polymers as hosts for blue iridium emitters: synthesis, photophysics and high efficiency PLEDs. Journal of Materials Chemistry C, 2013, 1, 8209.	2.7	19
16	Efficient Lightâ€Emitting Electrochemical Cells (LECs) Based on Ionic Iridium(III) Complexes with 1,3,4â€Oxadiazole Ligands. Advanced Functional Materials, 2013, 23, 4667-4677.	7.8	53
17	Cyclometalated Ir(III) Complexes for High-Efficiency Solution-Processable Blue PhOLEDs. Chemistry of Materials, 2013, 25, 2352-2358.	3.2	108
18	Controlled energy transfer between isolated donor-acceptor molecules intercalated in thermally self-ensemble two-dimensional hydrogen bonding cages. Physical Review B, 2012, 86, .	1.1	5

HAMEED A AL-ATTAR

#	Article	IF	CITATIONS
19	Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(iii) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies. Journal of Materials Chemistry, 2012, 22, 6419.	6.7	96
20	Dinuclear iridium(iii) complexes of cyclometalated fluorenylpyridine ligands as phosphorescent dopants for efficient solution-processed OLEDs. Journal of Materials Chemistry, 2012, 22, 13529.	6.7	41
21	Roomâ€Temperature Phosphorescence From Films of Isolated Waterâ€Soluble Conjugated Polymers in Hydrogenâ€Bonded Matrices. Advanced Functional Materials, 2012, 22, 3824-3832.	7.8	149
22	Solution-processable ambipolar host oligomers with high triplet energies for phosphorescent green emitters. Journal of Materials Chemistry, 2011, 21, 18439.	6.7	20
23	Solution processed multilayer polymer light-emitting diodes based on different molecular weight host. Journal of Applied Physics, 2011, 109, 074516.	1.1	23
24	Highly Efficient, Solutionâ€Processed, Single‣ayer, Electrophosphorescent Diodes and the Effect of Molecular Dipole Moment. Advanced Functional Materials, 2011, 21, 2376-2382.	7.8	66
25	Luminescent Platinum(II) Complexes Containing Cyclometallated Diaryl Ketimine Ligands: Synthesis, Photophysical and Computational Properties. European Journal of Inorganic Chemistry, 2010, 2010, 1963-1972.	1.0	25
26	Synthesis and spectroscopic characterization studies of low molecular weight light emitting PPV segmented copolymers. Optical Materials, 2009, 32, 350-357.	1.7	11
27	FRET and Competing Processes between Conjugated Polymer and Dye Substituted DNA Strands: A Comparative Study of Probe Selection in DNA Detection. Biomacromolecules, 2009, 10, 1077-1083.	2.6	17
28	Effect of Surfactant on FRET and Quenching in DNA Sequence Detection Using Conjugated Polymers. Advanced Functional Materials, 2008, 18, 2498-2509.	7.8	28
29	Improved single nucleotide polymorphisms detection using conjugated polymer/surfactant system and peptide nucleic acid. Biosensors and Bioelectronics, 2008, 23, 1466-1472.	5.3	35
30	Spectroscopic ellipsometry investigation of azo dye and azo dye doped polymer. EPJ Applied Physics, 2007, 37, 61-64.	0.3	10
31	Effect of Surfactant on Water-Soluble Conjugated Polymer Used in Biosensor. Journal of Physical Chemistry B, 2007, 111, 12418-12426.	1.2	83
32	Tris-Cyclometalated Iridium(III) Complexes of Carbazole(fluorenyl)pyridine Ligands: Synthesis, Redox and Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes. Chemistry - A European Journal, 2007, 13, 1423-1431.	1.7	109
33	Bridged diiridium complexes for electrophosphorescent OLEDs: synthesis, X-ray crystal structures, photophysics, and devices. Journal of Materials Chemistry, 2006, 16, 1046.	6.7	61
34	The Use of Substituted Iridium Complexes in Doped Polymer Electrophosphorescent Devices: The Influence of Triplet Transfer and Other Factors on Enhancing Device Performance. Advanced Functional Materials, 2006, 16, 1043-1050.	7.8	62
35	Dopant Effect on the Charge Injection, Transport, and Device Efficiency of an Electrophosphorescent Polymeric Light-Emitting Device. Advanced Functional Materials, 2006, 16, 2231-2242.	7.8	75
36	White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system. , 2005, 5961,		

³⁶ 58.

HAMEED A AL-ATTAR

#	Article	IF	CITATIONS
37	White polymeric light-emitting diode based on a fluorene polymerâ^•Ir complex blend system. Applied Physics Letters, 2005, 86, 121101.	1.5	134
38	Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene. Physical Review B, 2005, 72, .	1.1	29
39	Oligo(fluorenyl)pyridine ligands and their tris-cyclometalated iridium(iii) complexes: synthesis, photophysical properties and electrophosphorescent devices. Journal of Materials Chemistry, 2005, 15, 4963.	6.7	42
40	Optical constants of polyaniline/poly(methylmethacrylate) blend. Optics Communications, 2004, 229, 263-270.	1.0	21
41	Spectroscopic ellipsometry of single and multilayer amorphous germanium/aluminum thin film systems. Optics Communications, 2003, 220, 129-135.	1.0	7
42	Spectroscopic ellipsometry of electrochemically prepared thin film polyaniline. Thin Solid Films, 2003, 429, 286-294.	0.8	26
43	A new highly photorefractive polymer composite for optical data storage application. Journal of Optics, 2003, 5, S487-S492.	1.5	8
44	Polypyrrole conductive polymer characteristics as an optical display device. Polymer Engineering and Science, 1999, 39, 2482-2486.	1.5	7
45	The switching dynamics and noise limitations of indium antimonide bistable elements. IEEE Journal on Selected Areas in Communications, 1988, 6, 1152-1159.	9.7	4
46	Critical slowing-down phenomena in an InSb optically bistable étalon. Journal of the Optical Society of America B: Optical Physics, 1986, 3, 1157.	0.9	19
47	The gain-bandwidth of an InSb transphasor. IEEE Journal of Quantum Electronics, 1986, 22, 663-670.	1.0	6
48	Four-wave mixing in indium antimonide. IEEE Journal of Quantum Electronics, 1986, 22, 1328-1340.	1.0	16
49	Regenerative pulsations in an InSb bistable etalon. Optics Communications, 1986, 60, 181-186.	1.0	20
50	Frequency optimisation of InSb, optically-bistable elements. Optics Communications, 1986, 58, 433-438.	1.0	9
51	Carrier diffusion measurements in InSb by the angular dependence of degenerate four-wave mixing. Optics Letters, 1985, 10, 187.	1.7	48
52	Phase conjugation by degenerate four wave mixing in InSb with a cw CO laser. Optics Communications, 1984, 51, 352-356.	1.0	6