
Khalid Matrougui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endoplasmic Reticulum Stress Is Involved in Cardiac Damage and Vascular Endothelial Dysfunction in Hypertensive Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1652-1661.	1.1	182
2	Interleukin-10 Released by CD4 ⁺ CD25 ⁺ Natural Regulatory T Cells Improves Microvascular Endothelial Function Through Inhibition of NADPH Oxidase Activity in Hypertensive Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2534-2542.	1.1	151
3	Orai1-Mediated <i> I _{CRAC} </i> Is Essential for Neointima Formation After Vascular Injury. Circulation Research, 2011, 109, 534-542.	2.0	124
4	Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1063-1075.	1.9	119
5	Involvement of Metalloproteinases 2/9 in Epidermal Growth Factor Receptor Transactivation in Pressure-Induced Myogenic Tone in Mouse Mesenteric Resistance Arteries. Circulation, 2004, 110, 3587-3593.	1.6	112
6	Natural Regulatory T Cells Control Coronary Arteriolar Endothelial Dysfunction in Hypertensive Mice. American Journal of Pathology, 2011, 178, 434-441.	1.9	109
7	Elevated Epidermal Growth Factor Receptor Phosphorylation Induces Resistance Artery Dysfunction in Diabetic <i>db/db</i> Mice. Diabetes, 2008, 57, 1629-1637.	0.3	94
8	Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice. Laboratory Investigation, 2010, 90, 985-996.	1.7	90
9	A Novel Role for Epidermal Growth Factor Receptor Tyrosine Kinase and Its Downstream Endoplasmic Reticulum Stress in Cardiac Damage and Microvascular Dysfunction in Type 1 Diabetes Mellitus. Hypertension, 2012, 60, 71-80.	1.3	90
10	STIM1 Controls Endothelial Barrier Function Independently of Orai1 and Ca ²⁺ Entry. Science Signaling, 2013, 6, ra18.	1.6	75
11	Enhanced NF-κB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes. Diabetes, 2013, 62, 2078-2087.	0.3	74
12	Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1900-1909.	1.1	48
13	Poly(ADP-Ribose) Polymerase 1 Inhibition Improves Coronary Arteriole Function in Type 2 Diabetes Mellitus. Hypertension, 2012, 59, 1060-1068.	1.3	44
14	Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemiaâ€induced vascular pathology in type II diabetic mice. Journal of Pathology, 2012, 227, 165-174.	2.1	40
15	Calcium Signaling Is Dispensable for Receptor Regulation of Endothelial Barrier Function. Journal of Biological Chemistry, 2016, 291, 22894-22912.	1.6	40
16	Essential Role of IL-12 in Angiogenesis in Type 2 Diabetes. American Journal of Pathology, 2017, 187, 2590-2601.	1.9	33
17	Diabetes and microvascular pathophysiology: role of epidermal growth factor receptor tyrosine kinase. Diabetes/Metabolism Research and Reviews, 2010, 26, 13-16.	1.7	32
18	Differential role for stromal interacting molecule 1 in the regulation of vascular function. Pflugers Archiv European Journal of Physiology, 2015, 467, 1195-1202.	1.3	24

#	Article	IF	CITATIONS
19	Chronic Inhibition of Epidermal Growth Factor Receptor Tyrosine Kinase and Extracellular Signal-Regulated Kinases 1 and 2 (ERK1/2) Augments Vascular Response to Limb Ischemia in Type 2 Diabetic Mice. American Journal of Pathology, 2012, 180, 410-418.	1.9	20
20	Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 403-412.	1.8	13
21	Augmented ECF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2404-2410.	1.9	12
22	The Unraveling Truth About IRE1 and MicroRNAs in Diabetes. Diabetes, 2017, 66, 23-24.	0.3	8
23	Broken heart: A matter of the endoplasmic reticulum stress bad management?. World Journal of Cardiology, 2019, 11, 159-170.	0.5	6
24	Essential role for smooth muscle cell stromal interaction molecule-1 in myocardial infarction. Journal of Hypertension, 2018, 36, 377-386.	0.3	5
25	Endoplasmic Reticulum Stress and Microvascular Endothelial Dysfunction in Diabetes. Journal of Diabetes & Metabolism, 2011, 02, .	0.2	4
26	Broken heart: A matter of the endoplasmic reticulum stress bad management?. World Journal of Cardiology, 2019, 11, 159-170.	0.5	3
27	Can the NK Family of Osteoblast Homeodomain Transcription Factors Signaling Be a Magic Bullet to Reverse Calcification-Induced Vasculopathy in Diabetes?. Diabetes, 2014, 63, 4011-4012.	0.3	2
28	Letter by Belmadani et al Regarding Article, "Interleukin-35 Promotes Macrophage Survival and Improves Wound Healing After Myocardial Infarction in Miceâ€: Circulation Research, 2020, 126, e10-e11.	2.0	2
29	Role of High Mobility Group Box 1 in Cardiovascular Diseases. Inflammation, 2022, 45, 1864-1874.	1.7	2
30	PARPâ€l inhibition improves coronary arteriole function in type 2 diabetic mice. FASEB Journal, 2011, 25, 1025.9.	0.2	0
31	ER stress induction increases NADPH oxidase and reduces eNOS activity in endothelial cells. FASEB Journal, 2012, 26, 863.11.	0.2	Ο
32	Nuclear Factor kappa B (NFkB) Inhibition Improves Vascular Function in Type 2 Diabetic Mice. FASEB Journal, 2012, 26, .	0.2	0
33	Role of Stromal Interaction Molecule 1 in Arteriogenesis. FASEB Journal, 2020, 34, 1-1.	0.2	0
34	Letter by Belmadani and Matrougui Regarding Article, "Integrated Stress Response Couples Mitochondrial Protein Translation With Oxidative Stress Control― Circulation, 2022, 145, e802-e803.	1.6	0