Luis Noguera-Artiaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2045020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial activity of pomegranate peel extracts as affected by cultivar. Journal of the Science of Food and Agriculture, 2017, 97, 802-810.	3.5	108
2	Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (<i>Ziziphus jujuba</i> Mill.) fruits. Journal of the Science of Food and Agriculture, 2016, 96, 2682-2691.	3.5	89
3	Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. Journal of the Science of Food and Agriculture, 2015, 95, 2866-2873.	3.5	72
4	Volatile Composition of Essential Oils from Different Aromatic Herbs Grown in Mediterranean Regions of Spain. Foods, 2016, 5, 41.	4.3	70
5	Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT - Food Science and Technology, 2019, 103, 139-146.	5.2	59
6	Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 2017, 226, 179-186.	8.2	50
7	Consumer understanding of sustainability concept in agricultural products. Food Quality and Preference, 2021, 89, 104136.	4.6	50
8	Sensory and physico-chemical quality attributes of jujube fruits as affected by crop load. LWT - Food Science and Technology, 2015, 63, 899-905.	5.2	45
9	Effects of microwave roasting on physicochemical properties of pistachios (Pistaciavera L.). Food Science and Biotechnology, 2015, 24, 1995-2001.	2.6	42
10	Opinion of Spanish Consumers on Hydrosustainable Pistachios. Journal of Food Science, 2016, 81, S2559-S2565.	3.1	40
11	Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. Journal of Food Composition and Analysis, 2019, 84, 103294.	3.9	35
12	Consumer acceptability in the USA, Mexico, and Spain of chocolate chip cookies made with partial insect powder replacement. Journal of Food Science, 2020, 85, 1621-1628.	3.1	33
13	Consumers' Attitude towards the Sustainability of Different Food Categories. Foods, 2020, 9, 1608.	4.3	28
14	Sensory Profile and Acceptability of HydroSOStainable Almonds. Foods, 2019, 8, 64.	4.3	27
15	Aroma-active compounds, sensory profile, and phenolic composition of FondillÃ ³ n. Food Chemistry, 2020, 316, 126353.	8.2	25
16	Functional and sensory properties of pistachio nuts as affected by cultivar. Journal of the Science of Food and Agriculture, 2019, 99, 6696-6705.	3.5	22
17	Phenolic and triterpenoid composition and inhibition of α-amylase of pistachio kernels (Pistacia vera) Tj ETQq	1 1 0,78431 8.2	.4 rgBT /Over 21
18	Volatile composition of prickly pear fruit pulp from six Spanish cultivars. Journal of Food Science, 2020, 85, 358-363.	3.1	21

#	Article	IF	CITATIONS
19	Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chemistry, 2019, 280, 231-239.	8.2	20
20	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	5.2	20
21	Economic estimation of cactus pear production and its feasibility in Spain. Trends in Food Science and Technology, 2020, 103, 379-385.	15.1	18
22	Volatile, Sensory and Functional Properties of HydroSOS Pistachios. Foods, 2020, 9, 158.	4.3	18
23	Irrigation dose and plant density affect the essential oil content and sensory quality of parsley () Tj ETQq1 1 0.78	4314 rgB1 3.6	/Qyerlock 1
24	Influence of regulated deficit irrigation and rootstock on the functional, nutritional and sensory quality of pistachio nuts. Scientia Horticulturae, 2020, 261, 108994.	3.6	13
25	Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules, 2020, 25, 3648.	3.8	13
26	Chemical and sensorial characterization of spray dried <scp>hydroSOStainable</scp> almond milk. Journal of the Science of Food and Agriculture, 2021, 101, 1372-1381.	3.5	13
27	Volatile Composition, Sensory Profile, and Consumers' Acceptance of <i>Fondillón</i> . Journal of Food Quality, 2019, 2019, 1-10.	2.6	12
28	Growing Location Affects Physical Properties, Bioactive Compounds, and Antioxidant Activity of Pomegranate Fruit (<i>Punica granatum</i> L. var. Gabsi). International Journal of Fruit Science, 2020, 20, 508-523.	2.4	11
29	Effect of Organic and Conventional Production on the Quality of Lemon "Fino 49― Agronomy, 2022, 12, 980.	3.0	11
30	Antioxidant and Anthocyanin Content in Fermented Milks with Sweet Cherry is Affected by the Starter Culture and the Ripening Stage of the Cherry. Beverages, 2018, 4, 57.	2.8	10
31	Flavors and Aromas. , 2019, , 385-404.		9
32	Optimization of harvest date according to the volatile composition of Mediterranean aromatic herbs at different vegetative stages. Scientia Horticulturae, 2020, 267, 109336.	3.6	9
33	Development and characterization of liquors prepared with an underutilized citrus by-product, the peel. European Food Research and Technology, 2019, 245, 41-50.	3.3	8
34	How Consumers Perceive Water Sustainability (HydroSOStainable) in Food Products and How to Identify It by a Logo. Agronomy, 2020, 10, 1495.	3.0	8
35	Antioxidant, antihemolysis, and retinoprotective potentials of bioactive lipidic compounds from wild shrimp (<i>Litopenaeus stylirostris</i>) muscle. CYTA - Journal of Food, 2020, 18, 153-163.	1.9	8
36	<i>Octopus vulgaris</i> ink extracts exhibit antioxidant, antimutagenic, cytoprotective, antiproliferative, and proapoptotic effects in selected human cancer cell lines. Journal of Food Science, 2021, 86, 587-601.	3.1	8

#	Article	IF	CITATIONS
37	Bioactive compounds from Octopus vulgaris ink extracts exerted anti-proliferative and anti-inflammatory effects in vitro. Food and Chemical Toxicology, 2021, 151, 112119.	3.6	8
38	CHEMICAL COMPOSITION, ANTIOXIDANT ACTIVITY AND MINERAL CONTENT OF ARBUTUS UNEDO (LEAVES) TJ E	ГQ <u>q</u> <u>8</u> 0 0 r	ggT /Overloo

39	Antioxidant, Antimutagenic and Cytoprotective Properties of Hydrosos Pistachio Nuts. Molecules, 2019, 24, 4362.	3.8	7
40	Characterization and potential use of Diplotaxis erucoides as food ingredient for a sustainable modern cuisine and comparison with commercial mustards and wasabis. European Food Research and Technology, 2020, 246, 1429-1438.	3.3	7
41	Acrylamide content in French fries prepared with vegetable oils enriched with β-cyclodextrin or β-cyclodextrin-carvacrol complexes. LWT - Food Science and Technology, 2021, 148, 111765.	5.2	7
42	Cropping system contributes largely to fruit composition and sensory properties of pomegranate (Punica granatum L. var. Gabsi). South African Journal of Botany, 2018, 115, 170-178.	2.5	6
43	Effect of the herbs used in the formulation of a Spanish herb liqueur, Herbero de la Sierra de Mariola, on its chemical and functional compositions and antioxidant and antimicrobial activities. European Food Research and Technology, 2019, 245, 1197-1206.	3.3	6
44	Criteria for HydroSOS Quality Index. Application to Extra Virgin Olive Oil and Processed Table Olives. Water (Switzerland), 2020, 12, 555.	2.7	6
45	Cultivar and Rootstock Effects on Growth, Yield and Nut Quality of Pistachio under Semi-Arid Conditions of South Mediterranean. Horticulturae, 2022, 8, 606.	2.8	6

Volatile Composition, Texture and Sensory Description of $\langle scp \rangle \langle i \rangle G \langle i \rangle \langle scp \rangle \langle i \rangle az \langle i \rangle$ (Traditional) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 2.3

47	Fruit Response to Water-Scarcity Scenarios. Water Relations and Biochemical Changes. , 2018, , 349-375.		5
48	Fermented beverage obtained from hydroSOStainable pistachios. Journal of Food Science, 2020, 85, 3601-3610.	3.1	5
49	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	8.2	5
50	Effect of Pulsed Light on Quality of Shelled Walnuts. Foods, 2022, 11, 1186.	4.3	5
51	Influence of Bunch Compactness and Berry Thinning Methods on Wine Grape Quality and Sensory Attributes of Wine in Vitis vinifera L. cv. â€~Monastrell'. Agronomy, 2022, 12, 680.	3.0	4
52	Irrigation of Pistachios. , 2018, , 247-269.		3
53	Physicochemical, Volatile, and Sensory Characterization of Promising Cherry Tomato (Solanum) Tj ETQq1 1 0.7	84314 rgB 3.0	T /Qverlock
	Consumer Profile and Drivers Influencing Consumer Pakewier towards Fondill [§] 3n, a European		

⁵⁴ Consumer Profile and Drivers Influencing Consumer Behavior towards FondillÃ³n, a European Protected Naturally Sweet Red Wine. Foods, 2021, 10, 2651.

#	Article	IF	CITATIONS
55	Volatile Composition of Smoked and Non-Smoked Iranian Rice. Foods, 2016, 5, 81.	4.3	2
56	Texture. , 2019, , 293-314.		2
57	Molecular, Physico-Chemical, and Sensory Characterization of the Traditional Spanish Apple Variety "Pero de CehegÃn― Agronomy, 2020, 10, 1093.	3.0	1
58	EFFECTS OF TWO ROOTSTOCKS (PISTACIA VERA L. AND PISTACIA ATLANTICA DESF.) ON THE YIELD, MORPHOLOGY, CHEMICAL COMPOSITION, AND FUNCTIONAL PROPERTIES OF TWO PISTACHIO VARIETIES ("MATEUR―AND "ACHOURYâ€). Journal of Microbiology, Biotechnology and Food Sciences, 2018, 8, 853-856	0.8	1
59	6. The sense of touch. , 2017, , 127-146.		0
60	8. Modernisation of traditional food processes and products. , 2017, , 113-133.		0