Sally Leys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2044614/publications.pdf Version: 2024-02-01

ш			CITATIONS
#		IF	CHAHONS
1	The sponge pump as a morphological character in the fossil record. Paleobiology, 2022, 48, 446-461.	1.3	5
2	Models of flow through sponges must consider the sponge tissue. Nature, 2022, 603, E23-E25.	13.7	3
3	An Integrative Model of Carbon and Nitrogen Metabolism in a Common Deep-Sea Sponge (Geodia) Tj ETQq1 1 ().784314 ı 1.2	gBT_/Overloo
4	Machine Learning Applications of Convolutional Neural Networks and Unet Architecture to Predict and Classify Demosponge Behavior. Water (Switzerland), 2021, 13, 2512.	1.2	12
5	Two-year optical site characterization for the Pacific Ocean Neutrino Experiment (P-ONE) in the Cascadia Basin. European Physical Journal C, 2021, 81, 1.	1.4	10
6	Behaviors of sessile benthic animals in the abyssal northeast Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 173, 104729.	0.6	8
7	Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nature Communications, 2020, 11, 3676.	5.8	72
8	Foundation Species Abundance Influences Food Web Topology on Glass Sponge Reefs. Frontiers in Marine Science, 2020, 7, .	1.2	10
9	The Pacific Ocean Neutrino Experiment. Nature Astronomy, 2020, 4, 913-915.	4.2	85
10	Sponge communities in the eastern Canadian Arctic: species richness, diversity and density determined using targeted benthic sampling and underwater video analysis. Polar Biology, 2020, 43, 1287-1305.	0.5	2
11	Description and distribution of Desmacella hyalina sp. nov. (Porifera, Desmacellidae), a new cryptic demosponge in glass sponge reefs from the western coast of Canada. Marine Biodiversity, 2020, 50, 1.	0.3	0
12	Hydrodynamics of sponge pumps and evolution of the sponge body plan. ELife, 2020, 9, .	2.8	13
13	Sponge Behavior and the Chemical Basis of Responses: A Post-Genomic View. Integrative and Comparative Biology, 2019, 59, 751-764.	0.9	19
14	Settlement of juvenile glass sponges and other invertebrate cryptofauna on the Hecate Strait glass sponge reefs. Invertebrate Biology, 2019, 138, e12266.	0.3	4
15	Animal Evolution: The Hidden Biology of the Ctenophore Cilium. Current Biology, 2019, 29, R1079-R1081.	1.8	0
16	A problematic animal fossil from the early Cambrian Hetang Formation, South China—A reply. Journal of Paleontology, 2019, 93, 1279-1282.	0.5	3
17	A problematic animal fossil from the early Cambrian Hetang Formation, South China. Journal of Paleontology, 2019, 93, 1047-1057.	0.5	4
18	Suspended sediment causes feeding current arrests in situ in the glass sponge Aphrocallistes vastus. Marine Environmental Research, 2018, 137, 111-120.	1.1	22

#	Article	IF	CITATIONS
19	Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Scientific Reports, 2018, 8, 756.	1.6	20
20	Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deepâ€water boreal sponge <i>Geodia barretti</i> . Limnology and Oceanography, 2018, 63, 187-202.	1.6	55
21	Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics. BioEssays, 2018, 40, e1700237.	1.2	27
22	Wnt signaling and polarity in freshwater sponges. BMC Evolutionary Biology, 2018, 18, 12.	3.2	35
23	Oxygen and the Energetic Requirements of the First Multicellular Animals. Integrative and Comparative Biology, 2018, 58, 666-676.	0.9	31
24	The energetic cost of filtration by demosponges and their behavioural response to ambient currents. Journal of Experimental Biology, 2017, 220, 995-1007.	0.8	36
25	Spicule and flagellated chamber formation in a growth zone of <i>Aphrocallistes vastus</i> (Porifera, Hexactinellida). Invertebrate Biology, 2017, 136, 22-30.	0.3	4
26	Clones or clans: the genetic structure of a deepâ€sea sponge, <i>Aphrocallistes vastus,</i> in unique sponge reefs of British Columbia, Canada. Molecular Ecology, 2017, 26, 1045-1059.	2.0	14
27	Sponge Reefs of the British Columbia, Canada Coast: Impacts of Climate Change and Ocean Acidification. , 2017, , 429-445.		7
28	Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns. , 2017, , 145-183.		72
29	Think like a sponge: The genetic signal of sensory cells in sponges. Developmental Biology, 2017, 431, 93-100.	0.9	32
30	The role of cell replacement in benthic–pelagic coupling by suspension feeders. Royal Society Open Science, 2016, 3, 160484.	1.1	22
31	Dynamic change, recruitment and resilience in reef-forming glass sponges. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 429-436.	0.4	28
32	Threeâ€dimensional fate mapping of larval tissues through metamorphosis in the glass sponge <i>Oopsacas minuta</i> . Invertebrate Biology, 2016, 135, 259-272.	0.3	9
33	Elements of a â€~nervous system' in sponges. Journal of Experimental Biology, 2015, 218, 581-591.	0.8	104
34	Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnology and Oceanography, 2015, 60, 78-88.	1.6	111
35	The hidden biology of sponges and ctenophores. Trends in Ecology and Evolution, 2015, 30, 282-291.	4.2	173
36	Sponge cell aggregation: checkpoints in development indicate a high level of organismal complexity. Invertebrate Biology, 2015, 134, 1-18.	0.3	22

#	Article	IF	CITATIONS
37	Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns. , 2015, , 1-39.		52
38	Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evolutionary Biology, 2014, 14, 3.	3.2	92
39	The Analysis of Eight Transcriptomes from All Poriferan Classes Reveals Surprising Genetic Complexity in Sponges. Molecular Biology and Evolution, 2014, 31, 1102-1120.	3.5	211
40	SNP discovery in a reef-forming glass sponge, Aphrocallistes vastus, using the Ion Torrent next generation sequencing platform. Conservation Genetics Resources, 2014, 6, 49-51.	0.4	4
41	Choanoflagellate and choanocyte collarâ€flagellar systems and the assumption of homology. Evolution & Development, 2014, 16, 25-37.	1.1	87
42	A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge. Journal of Experimental Biology, 2012, 215, 2435-2444.	0.8	10
43	The Physiology and Molecular Biology of Sponge Tissues. Advances in Marine Biology, 2012, 62, 1-56.	0.7	90
44	Epithelia, an Evolutionary Novelty of Metazoans. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 438-447.	0.6	75
45	Optimization of preservation and storage time of sponge tissues to obtain quality mRNA for nextâ€generation sequencing. Molecular Ecology Resources, 2012, 12, 312-322.	2.2	48
46	The dorid nudibranchs <i><scp>P</scp>eltodoris lentiginosa</i> and <i><scp>A</scp>rchidoris od glass sponges. Invertebrate Biology, 2012, 131, 75-81.</i>	0.3	18
47	The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan. PLoS ONE, 2011, 6, e27787.	1.1	130
48	Expansion, diversification, and expression of T-box family genes in Porifera. Development Genes and Evolution, 2010, 220, 251-262.	0.4	18
49	Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evolution & Development, 2010, 12, 484-493.	1.1	60
50	Phototactic responses of larvae from the marine sponges <i>Neopetrosia proxima</i> and <i>Xestospongia bocatorensis</i> (Haplosclerida: Petrosiidae). Invertebrate Biology, 2010, 129, 121-128.	0.3	24
51	The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 2010, 466, 720-726.	13.7	917
52	Freshwater Sponges Have Functional, Sealing Epithelia with High Transepithelial Resistance and Negative Transepithelial Potential. PLoS ONE, 2010, 5, e15040.	1.1	58
53	Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, <i>Ephydatia muelleri</i> (Demospongiae, Spongillidae). Journal of Experimental Biology, 2010, 213, 2310-2321.	0.8	84
54	Epithelia and integration in sponges. Integrative and Comparative Biology, 2009, 49, 167-177.	0.9	88

#	Article	IF	CITATIONS
55	Expression of a poriferan potassium channel: insights into the evolution of ion channels in metazoans. Journal of Experimental Biology, 2009, 212, 761-767.	0.8	25
56	Phylogenomics Revives Traditional Views on Deep Animal Relationships. Current Biology, 2009, 19, 706-712.	1.8	611
57	Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Marine Biology, 2008, 154, 973-984.	0.7	79
58	The Demosponge <i>Amphimedon queenslandica</i> : Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity. Cold Spring Harbor Protocols, 2008, 2008, pdb.emo108.	0.2	24
59	The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: Evidence for programmed translational frameshifting. BMC Genomics, 2008, 9, 33.	1.2	49
60	Isolation of Amphimedon Developmental Material. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5095-pdb.prot5095.	0.2	29
61	In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnology and Oceanography, 2007, 52, 428-440.	1.6	122
62	The Biology of Class Sponges. Advances in Marine Biology, 2007, 52, 1-145.	0.7	149
63	Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge. Journal of Experimental Biology, 2007, 210, 3736-3748.	0.8	143
64	Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan. Evolution & Development, 2007, 9, 618-631.	1.1	48
65	Embryogenesis and larval differentiation in sponges. Canadian Journal of Zoology, 2006, 84, 262-287.	0.4	84
66	Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution & Development, 2006, 8, 150-173.	1.1	165
67	Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebrate Biology, 2006, 125, 177-194.	0.3	42
68	Physiology of coordination in sponges. Canadian Journal of Zoology, 2006, 84, 288-306.	0.4	80
69	Feeding in a Calcareous Sponge: Particle Uptake by Pseudopodia. Biological Bulletin, 2006, 211, 157-171.	0.7	91
70	Embryogenesis in the glass sponge Oopsacas minuta: Formation of syncytia by fusion of blastomeres. Integrative and Comparative Biology, 2006, 46, 104-117.	0.9	38
71	Sponges. Current Biology, 2005, 15, R114-R115.	1.8	16
72	Gastrulation in Calcareous Sponges: In Search of Haeckel's Gastraea. Integrative and Comparative Biology, 2005, 45, 342-351.	0.9	49

#	Article	IF	CITATIONS
73	Sponge Development and Antiquity of Animal Pattern Formation. Integrative and Comparative Biology, 2005, 45, 335-341.	0.9	46
74	Patterns of glass sponge (Porifera, Hexactinellida) distribution in coastal waters of British Columbia, Canada. Marine Ecology - Progress Series, 2004, 283, 133-149.	0.9	77
75	Comparative study of spiculogenesis in demosponge and hexactinellid larvae. Microscopy Research and Technique, 2003, 62, 300-311.	1.2	40
76	Molecular and functional analysis of the (6-4) photolyase from the hexactinellid Aphrocallistes vastus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1651, 41-49.	1.1	24
77	The Significance of Syncytial Tissues for the Position of the Hexactinellida in the Metazoa. Integrative and Comparative Biology, 2003, 43, 19-27.	0.9	69
78	Spectral sensitivity in a sponge larva. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 199-202.	0.7	90
79	Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebrate Biology, 2002, 121, 171-189.	0.3	112
80	Ecological regulation of development: induction of marine invertebrate metamorphosis. International Journal of Developmental Biology, 2002, 46, 679-86.	0.3	65
81	Cytological Basis of Photoresponsive Behavior in a Sponge Larva. Biological Bulletin, 2001, 201, 323-338.	0.7	187
82	Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor. Glycobiology, 2001, 11, 21-29.	1.3	45
83	Introduction to studies on cell adhesion using invertebrate models. , 1999, 44, 201-203.		0
84	The Choanosome of Hexactinellid Sponges. Invertebrate Biology, 1999, 118, 221.	0.3	32
85	Impulse conduction in a sponge. Journal of Experimental Biology, 1999, 202 (Pt 9), 1139-50.	0.8	26
86	Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. Journal of Experimental Marine Biology and Ecology, 1998, 230, 111-129.	0.7	108
87	Phylogenetic Position of the Hexactinellida Within the Phylum Porifera Based on the Amino Acid Sequence of the Protein Kinase C from Rhabdocalyptus dawsoni. Journal of Molecular Evolution, 1998, 46, 721-728.	0.8	108
88	Transport Pathways in the Neotropical Sponge Aplysina. Biological Bulletin, 1998, 195, 30-42.	0.7	38
89	Evolution of Early Metazoa: Phylogenetic Status of the Hexactinellida Within the Phylum of Porifera (Sponges). Progress in Molecular and Subcellular Biology, 1998, 21, 141-156.	0.9	20
90	Sponge cell culture: a comparative evaluation of adhesion to a native tissue extract and other culture substrates. Tissue and Cell, 1997, 29, 77-87.	1.0	22

#	Article	IF	CITATIONS
91	Cloning of Hsp70 genes from the marine sponges Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges. Biological Journal of the Linnean Society, 1997, 62, 581-592.	0.7	6
92	Electrical recording from a glass sponge. Nature, 1997, 387, 29-30.	13.7	115
93	Use of Sandwich Cultures for the Study of Feeding in the Hexactinellid Sponge <i>Rhabdocalyptus dawsoni</i> (Lambe, 1892). Acta Zoologica, 1996, 77, 227-232.	0.6	22
94	Cytoskeletal Architecture and Organelle Transport in Giant Syncytia Formed by Fusion of Hexactinellid Sponge Tissues. Biological Bulletin, 1995, 188, 241-254.	0.7	35