
Kathleen S Rein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2044589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential components of the xanthophyll cycle differ in high and low toxin Karenia brevis. Harmful Algae, 2021, 103, 102006.	4.8	2
2	The Marine Neurotoxin Brevetoxin (PbTx-2) Inhibits <i>Karenia brevis</i> and Mammalian Thioredoxin Reductases by Targeting Different Residues. Journal of Natural Products, 2021, 84, 2961-2970.	3.0	9
3	Effectors of thioredoxin reductase: Brevetoxins and manumycin-A. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 217, 76-86.	2.6	10
4	Manumycin A Is a Potent Inhibitor of Mammalian Thioredoxin Reductase-1 (TrxR-1). ACS Medicinal Chemistry Letters, 2018, 9, 318-322.	2.8	22
5	Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase. Harmful Algae, 2018, 71, 29-39.	4.8	9
6	Metabolism of okadaic acid by NADPH-dependent enzymes present in human or rat liver S9 fractions results in different toxic effects. Toxicology in Vitro, 2017, 42, 161-170.	2.4	15
7	Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1. Toxicology and Applied Pharmacology, 2017, 329, 58-66.	2.8	17
8	Toxin composition of the 2016 Microcystis aeruginosa bloom in the St. Lucie Estuary, Florida. Toxicon, 2017, 138, 169-172.	1.6	26
9	Differences in metabolism of the marine biotoxin okadaic acid by human and rat cytochrome P450 monooxygenases. Archives of Toxicology, 2016, 90, 2025-2036.	4.2	18
10	Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis. Phytochemistry, 2016, 122, 11-21.	2.9	8
11	Student Response to a Partial Inversion of an Organic Chemistry Course for Non-Chemistry Majors. Journal of Chemical Education, 2015, 92, 797-802.	2.3	37
12	Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Lightâ€Harvesting Complex II (LHCII) of Photosystem II. ChemBioChem, 2015, 16, 1060-1067.	2.6	18
13	In vivo demonstration of okadaic acid internalization in glutamatergic spinal motor neurons (1050.3). FASEB Journal, 2014, 28, 1050.3.	0.5	0
14	Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity. Journal of Phycology, 2013, 49, 1118-1127.	2.3	23
15	The use of Mosher derivatives for the determination of the absolute configuration of substituted isoxazolidines. Tetrahedron: Asymmetry, 2013, 24, 223-228.	1.8	2
16	Diastereoselective synthesis of deprotectable isoxazolidines. Tetrahedron Letters, 2013, 54, 1866-1868.	1.4	3
17	Synthesis, receptor binding and activity of iso and azakainoids. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1949-1952.	2.2	9
18	Gene expression profiling of human liver carcinoma (HepG2) cells exposed to the marine toxin okadaic acid. Toxicological and Environmental Chemistry, 2012, 94, 1805-1821.	1.2	7

KATHLEEN S REIN

#	Article	IF	CITATIONS
19	Biosynthesis of Athmu, a α,γ-hydroxy-β-amino acid of pahayokolides A–B. Tetrahedron Letters, 2012, 53, 6758-6760.	1.4	3
20	The structures of three metabolites of the algal hepatotoxin okadaic acid produced by oxidation with human cytochrome P450. Bioorganic and Medicinal Chemistry, 2012, 20, 3742-3745.	3.0	13
21	Biosynthetic Origin of the 3-Amino-2,5,7,8-tetrahydroxy-10-methylundecanoic Acid Moiety and Absolute Configuration of Pahayokolides A and B. Journal of Natural Products, 2011, 74, 1535-1538.	3.0	9
22	New Peptides Isolated from Lyngbya Species: A Review. Marine Drugs, 2010, 8, 1817-1837.	4.6	72
23	The algal hepatoxoxin okadaic acid is a substrate for human cytochromes CYP3A4 and CYP3A5. Toxicon, 2010, 55, 325-332.	1.6	43
24	Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon, 2010, 55, 653-657.	1.6	50
25	UV and solar TiO2 photocatalysis of brevetoxins (PbTxs). Toxicon, 2010, 55, 1008-1016.	1.6	34
26	Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure. Toxicon, 2010, 56, 648-651.	1.6	5
27	Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia, 2009, 48, 249-257.	1.4	41
28	Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiology Ecology, 2008, 64, 55-64.	2.7	85
29	Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates. Marine Drugs, 2008, 6, 164-179.	4.6	24
30	Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates. Marine Drugs, 2008, 6, 164-179.	4.6	21
31	Structures of Pahayokolides A and B, Cyclic Peptides from a Lyngbya sp Journal of Natural Products, 2007, 70, 730-735.	3.0	47
32	1,3-Dipolar Cycloadditions of Trimethylsilyldiazomethane Revisited:  Steric Demand of the Dipolarophile and the Influence on Product Distribution. Journal of Organic Chemistry, 2007, 72, 650-653.	3.2	28
33	Ultrasonically Induced Degradation of Microcystin-LR and -RR:  Identification of Products, Effect of pH, Formation and Destruction of Peroxides. Environmental Science & Technology, 2006, 40, 3941-3946.	10.0	131
34	The Biosynthesis of Polyketide Metabolites by Dinoflagellates. Advances in Applied Microbiology, 2006, 59, 93-125.	2.4	41
35	Localization of polyketide synthase encoding genes to the toxic dinoflagellate Karenia brevis. Phytochemistry, 2005, 66, 1767-1780.	2.9	64
36	Low-mode docking search in iGluR homology models implicates three residues in the control of ligand selectivity. Journal of Molecular Recognition, 2005, 18, 183-189.	2.1	1

KATHLEEN S REIN

#	Article	IF	CITATIONS
37	Ultrasonically Induced Degradation and Detoxification of Microcystin-LR (Cyanobacterial Toxin). Environmental Science & Technology, 2005, 39, 6300-6305.	10.0	107
38	The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 2005, 45, 691-698.	1.6	56
39	Aza analogs of kainoids by dipolar cycloaddition. Tetrahedron Letters, 2004, 45, 4703-4705.	1.4	21
40	Polyketide Synthase Genes from Marine Dinoflagellates. Marine Biotechnology, 2003, 5, 1-12.	2.4	98
41	The structural basis for kainoid selectivity at AMPA receptors revealed by low-mode docking calculations. Bioorganic and Medicinal Chemistry, 2003, 11, 551-559.	3.0	15
42	Brevetoxin derivatives that inhibit toxin activity. Chemistry and Biology, 2000, 7, 385-393.	6.0	44
43	Polyketides from dinoflagellates: origins, pharmacology and biosynthesis. Comparative Biochemistry and Molecular Biology, 1999, 124, 117-131.	1.6	79
44	The relationship of brevetoxin †length' and A-ring functionality to binding and activity in neuronal sodium channels. Chemistry and Biology, 1995, 2, 533-541.	6.0	106
45	Brevetoxin-3: Total assignment of the 1H and 13C NMR spectra at the submicromole level. Tetrahedron, 1995, 51, 8409-8422.	1.9	23
46	Is the A-ring lactone of brevetoxin PbTX-3 required for sodium channel orphan receptor binding and activity?. Natural Toxins, 1994, 2, 212-221.	1.0	17
47	Brevetoxin PbTx-2 immunology: Differential epitope recognition by antibodies from two goats. Toxicon, 1994, 32, 883-890.	1.6	18
48	Conformational Analysis of the Sodium Channel Modulator, Brevetoxin A, Comparison with Brevetoxin B Conformations, and a Hypothesis about the Common Pharmacophore of the "Site 5" Toxins. Journal of Organic Chemistry, 1994, 59, 2101-2106.	3.2	71
49	Brevetoxin B: Chemical Modifications, Synaptosome Binding, Toxicity, and an Unexpected Conformational Effect. Journal of Organic Chemistry, 1994, 59, 2107-2113.	3.2	78
50	Binding of brevetoxins and ciguatoxin to the voltage-sensitive sodium channel and conformational analysis of brevetoxin B. Toxicon, 1992, 30, 780-785.	1.6	65
51	Synthesis of the phthalide isoquinoline alkaloids (-)-egenine, (-)-corytensine, and (-)-bicuculline by asymmetric carbonyl addition of chiral dipole-stabilized organometallics. Journal of Organic Chemistry, 1991, 56, 1564-1569.	3.2	34
52	Analysis of (.alphahydroxybenzyl)tetrahydroisoquinoline stereoisomers by Pirkle column HPLC: correlation of absolute configuration with order of elution. Journal of Organic Chemistry, 1991, 56, 839-841.	3.2	10
53	Single electron transfer in the addition of chiral dipole-stabilized organolithiums to carbonyls. Stereochemistry of a chiral nucleophile as a mechanistic probe. Tetrahedron Letters, 1991, 32, 1941-1944.	1.4	29
54	Synthesis of (â^')-egenine (decumbensine) by asymmetric carbonyl addition. Tetrahedron Letters, 1990, 31, 3711-3714.	1.4	22

#	Article	IF	CITATIONS
55	Chiral dipole-stabilized anions: experiment and theory in benzylic and allylic systems. Stereoselective deprotonations, pyramidal inversions, and stereoselective alkylations of lithiated (tetrahydroisoquinolyl)oxazolines. Journal of the American Chemical Society, 1989, 111, 2211-2217.	13.7	87
56	Acyclic stereoselection in the alkylation of chiral dipole-stabilized organolithiums: a self-immolative chirality transfer process for the synthesis of primary amines. Journal of Organic Chemistry, 1989, 54, 3002-3004.	3.2	55
57	High-performance liquid chromatographic (HPLC) assay using fluorescence detection for the simultaneous determination of gallopamil and norgallopamil in human plasma. Pharmaceutical Research, 1987, 04, 327-331.	3.5	5