Sung Sik Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2044134/publications.pdf Version: 2024-02-01

SUNC SIK LEE

#	Article	IF	CITATIONS
1	Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body. NanoImpact, 2022, 25, 100374.	4.5	20
2	Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen. Journal of Catalysis, 2022, 407, 54-64.	6.2	9
3	DNA circles promote yeast ageing in part through stimulating the reorganization of nuclear pore complexes. ELife, 2022, 11, .	6.0	11
4	Mre11-Rad50 oligomerization promotes DNA double-strand break repair. Nature Communications, 2022, 13, 2374.	12.8	15
5	Electron Diffraction Enables the Mapping of Coke in ZSMâ€5 Micropores Formed during Methanolâ€ŧoâ€Hydrocarbons Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
6	Viscoelastic particle focusing in human biofluids. Electrophoresis, 2021, 42, 2238-2245.	2.4	15
7	Gear-shaped micromixer for synthesis of silica particles utilizing inertio-elastic flow instability. Lab on A Chip, 2021, 21, 513-520.	6.0	27
8	Aluminum Redistribution in ZSM-5 Zeolite upon Interaction with Gaseous Halogens and Hydrogen Halides and Implications in Catalysis. Journal of Physical Chemistry C, 2020, 124, 722-733.	3.1	8
9	Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nature Communications, 2020, 11, 3465.	12.8	56
10	Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device. BioTechniques, 2020, 69, 46-51.	1.8	8
11	Crosstalk and spatiotemporal regulation between stress-induced MAP kinase pathways and pheromone signaling in budding yeast. Cell Cycle, 2020, 19, 1707-1715.	2.6	17
12	Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device. Lab on A Chip, 2020, 20, 2646-2655.	6.0	19
13	Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology. Micromachines, 2020, 11, 372.	2.9	3
14	Mechanical stress impairs pheromone signaling via Pkc1-mediated regulation of the MAPK scaffold Ste5. Journal of Cell Biology, 2019, 218, 3117-3133.	5.2	13
15	Microfluidic Generation of Amino-Functionalized Hydrogel Microbeads Capable of On-Bead Bioassay. Micromachines, 2019, 10, 527.	2.9	4
16	A Toolbox for Organelle Mechanobiology Research—Current Needs and Challenges. Micromachines, 2019, 10, 538.	2.9	11
17	Normal stress difference–driven particle focusing in nanoparticle colloidal dispersion. Science Advances, 2019, 5, eaav4819.	10.3	10
18	Microfluidic platform for single cell analysis under dynamic spatial and temporal stimulation. Biosensors and Bioelectronics, 2018, 104, 58-64.	10.1	33

SUNG SIK LEE

#	Article	IF	CITATIONS
19	Integrated Platform for Monitoring Single-cell MAPK Kinetics in Computer-controlled Temporal Stimulations. Scientific Reports, 2018, 8, 11126.	3.3	9
20	Microfluidics: an Untapped Resource in Viral Diagnostics and Viral Cell Biology. Current Clinical Microbiology Reports, 2018, 5, 245-251.	3.4	19
21	Multiwavelength Light-Responsive Au/B-TiO ₂ Janus Micromotors. ACS Nano, 2017, 11, 6146-6154.	14.6	155
22	Programmable Static Droplet Array for the Analysis of Cell–Cell Communication in a Confined Microenvironment. Analytical Chemistry, 2017, 89, 9722-9729.	6.5	19
23	Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13471-13476.	7.1	46
24	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
25	Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps. Lab on A Chip, 2016, 16, 1358-1365.	6.0	22
26	Frequency modulation of <scp>ERK</scp> activation dynamics rewires cell fate. Molecular Systems Biology, 2015, 11, 838.	7.2	189
27	Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade. Integrative Biology (United Kingdom), 2015, 7, 412-422.	1.3	29
28	Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis. Nanoscale, 2015, 7, 10340-10343.	5.6	14
29	A Cellular System for Spatial Signal Decoding in Chemical Gradients. Developmental Cell, 2015, 35, 458-470.	7.0	50
30	Microfluidic particle separator utilizing sheathless elasto-inertial focusing. Chemical Engineering Science, 2015, 126, 237-243.	3.8	49
31	A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab on A Chip, 2015, 15, 3677-3686.	6.0	53
32	A rapid and effective vignetting correction for quantitative microscopy. RSC Advances, 2014, 4, 52727-52733.	3.6	6
33	Noninvasive label-free nanoplasmonic optical imaging for real-time monitoring of in vitro amyloid fibrogenesis. Nanoscale, 2014, 6, 3561-3565.	5.6	9
34	Calorie restriction does not elicit a robust extension of replicative lifespan in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11727-11731.	7.1	44
35	Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase. Molecular Cell, 2014, 53, 471-483.	9.7	274
36	Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase. Molecular Cell, 2014, 53, 515.	9.7	4

SUNG SIK LEE

#	Article	IF	CITATIONS
37	DNA-based highly tunable particle focuser. Nature Communications, 2013, 4, 2567.	12.8	126
38	Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast. Nature Protocols, 2013, 8, 1019-1027.	12.0	35
39	Continuous High-resolution Microscopic Observation of Replicative Aging in Budding Yeast. Journal of Visualized Experiments, 2013, , e50143.	0.3	7
40	Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4916-4920.	7.1	192
41	Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab on A Chip, 2012, 12, 2807.	6.0	98
42	Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter, 2012, 8, 5011.	2.7	101
43	Cell Stretching Measurement Utilizing Viscoelastic Particle Focusing. Analytical Chemistry, 2012, 84, 10471-10477.	6.5	97
44	Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO Journal, 2012, 31, 3691-3703.	7.8	237
45	An integrated image analysis platform to quantify signal transduction in single cells. Integrative Biology (United Kingdom), 2012, 4, 1274.	1.3	39
46	Quantitative and dynamic assay of single cell chemotaxis. Integrative Biology (United Kingdom), 2012, 4, 381.	1.3	29
47	Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on A Chip, 2011, 11, 266-273.	6.0	257
48	Medium viscoelastic effect on particle segregation in concentrated suspensions under rectangular microchannel flows. Korea Australia Rheology Journal, 2011, 23, 247-254.	1.7	7
49	Effect of local kinematic history on the dynamic self-assembly of droplets in micro-expansion channels. Korea Australia Rheology Journal, 2011, 23, 119-126.	1.7	3
50	Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO Journal, 2010, 29, 2515-2526.	7.8	257
51	Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomedical Microdevices, 2009, 11, 1021-1027.	2.8	123
52	Strain Hardening of Red Blood Cells by Accumulated Cyclic Supraphysiological Stress. Artificial Organs, 2007, 31, 80-86.	1.9	27
53	Increased Intron Retention Propagates Aging from the Nucleus to the Cytoplasm. SSRN Electronic Journal, 0, , .	0.4	2
54	Electron Diffraction Enables the Mapping of Coke in ZSMâ€5 Micropores Formed during Methanolâ€ŧoâ€Hydrocarbons Conversion. Angewandte Chemie, 0, , .	2.0	0