
Xuejun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2044091/publications.pdf Version: 2024-02-01

XUELLIN WANC

#	Article	IF	CITATIONS
1	Ubiquitin Carboxyl-Terminal Hydrolase L1 of Cardiomyocytes Promotes Macroautophagy and Proteostasis and Protects Against Post-myocardial Infarction Cardiac Remodeling and Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 866901.	1.1	4
2	UCHL1 protects against ischemic heart injury via activating HIF-1α signal pathway. Redox Biology, 2022, 52, 102295.	3.9	10
3	Activation of the Soluble Guanylate Cyclase Increases 26S Proteasome Activities and Protects against Proteotoxicity in Cardiomyocytes. FASEB Journal, 2022, 36, .	0.2	Ο
4	Peripherally misfolded proteins exacerbate ischemic stroke-induced neuroinflammation and brain injury. Journal of Neuroinflammation, 2021, 18, 29.	3.1	12
5	Editorial: Targeting Cardiac Proteotoxicity. Frontiers in Physiology, 2021, 12, 669356.	1.3	1
6	Autophagy Controls Nrf2-Mediated Dichotomy in Pressure Overloaded Hearts. Frontiers in Physiology, 2021, 12, 673145.	1.3	7
7	Defining Molecular Mechanism Promoting Neointimal Hyperplasia by CSN8 Hypomorphism. FASEB Journal, 2021, 35, .	0.2	0
8	Soluble guanylate cyclase activation increases proteasome activities and protects against proteotoxicity in cardiomyocytes. FASEB Journal, 2021, 35, .	0.2	0
9	Phenotypic Differences Among Mice with Induced Cardiomyocyteâ€Restricted Ablation of <i>Cops5,</i> Cops8, or Both. FASEB Journal, 2021, 35, .	0.2	0
10	Exercise-induced peptide TAG-23 protects cardiomyocytes from reperfusion injury through regulating PKG–cCbl interaction. Basic Research in Cardiology, 2021, 116, 41.	2.5	4
11	Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes. Frontiers in Physiology, 2021, 12, 690423.	1.3	5
12	Pathological Significance and Prognostic Roles of Indirect Bilirubin/Albumin Ratio in Hepatic Encephalopathy. Frontiers in Medicine, 2021, 8, 706407.	1.2	4
13	Catecholamine Surges Cause Cardiomyocyte Necroptosis via a RIPK1–RIPK3-Dependent Pathway in Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 740839.	1.1	8
14	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf_50 2	222 Td (edition 1,430
15	A highly selective pyridoxal-based chemosensor for the detection of Zn(<scp>ii</scp>) and application in live-cell imaging; X-ray crystallography of pyridoxal-TRIS Schiff-base Zn(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes. RSC Advances, 2021, 11, 34181-34192.	1.7	12
16	Short Term Exposure to Bilirubin Induces Encephalopathy Similar to Alzheimer's Disease in Late Life. Journal of Alzheimer's Disease, 2020, 73, 277-295.	1.2	10
17	Abnormal Serum Bilirubin/Albumin Concentrations in Dementia Patients With Aβ Deposition and the Benefit of Intravenous Albumin Infusion for Alzheimer's Disease Treatment. Frontiers in Neuroscience, 2020, 14, 859.	1.4	10

18Peptidomics Analysis Reveals Peptide PDCryab1 Inhibits Doxorubicin-Induced Cardiotoxicity. Oxidative
Medicine and Cellular Longevity, 2020, 2020, 1-23.1.98

#	Article	IF	CITATIONS
19	Proteasome malfunction activates the PPP3/calcineurin-TFEB-SQSTM1/p62 pathway to induce macroautophagy in the heart. Autophagy, 2020, 16, 2114-2116.	4.3	5
20	Autophagy Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic Cardiomyopathy in Mice. Diabetes, 2020, 69, 2720-2734.	0.3	66
21	The Calcineurin-TFEB-p62 Pathway Mediates the Activation of Cardiac Macroautophagy by Proteasomal Malfunction. Circulation Research, 2020, 127, 502-518.	2.0	73
22	CYLD exaggerates pressure overload-induced cardiomyopathy via suppressing autolysosome efflux in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 145, 59-73.	0.9	18
23	Priming the Proteasome to Protect against Proteotoxicity. Trends in Molecular Medicine, 2020, 26, 639-648.	3.5	17
24	COP9 Signalosome Suppresses RIPK1-RIPK3–Mediated Cardiomyocyte Necroptosis in Mice. Circulation: Heart Failure, 2020, 13, e006996.	1.6	14
25	In vivo genetic interrogations establish unequivocally the pathophysiological significance of proteasome phosphoregulation by protein kinase A. Journal of Molecular and Cellular Cardiology, 2020, 140, 6.	0.9	Ο
26	UCHL1 regulates oxidative activity in skeletal muscle. PLoS ONE, 2020, 15, e0241716.	1.1	11
27	RPN6â€Ser14 Phosphorylation Is Responsible for Proteasome Activation by PKA and Protects against Pathological Cardiac Hypertrophy and Malfunction in Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
28	Highly Dynamic Changes in the Activity and Regulation of Macroautophagy in Hearts Subjected to Increased Proteotoxic Stress. Frontiers in Physiology, 2019, 10, 758.	1.3	22
29	UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sciences, 2019, 233, 116699.	2.0	15
30	Synergistic effects of gefitinib and thalidomide treatment on EGFR-TKI-sensitive and -resistant NSCLC. European Journal of Pharmacology, 2019, 856, 172409.	1.7	16
31	Inhibition of USP14 enhances the sensitivity of breast cancer to enzalutamide. Journal of Experimental and Clinical Cancer Research, 2019, 38, 220.	3.5	58
32	PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Science Advances, 2019, 5, eaaw5870.	4.7	49
33	Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 157.	3.5	71
34	Auranofin lethality to prostate cancer includes inhibition of proteasomal deubiquitinases and disrupted androgen receptor signaling. European Journal of Pharmacology, 2019, 846, 1-11.	1.7	34
35	Necroptosis Resulting from Activation of a RIP3â€dependent Pathway Contributes to Cardiomyocyte Death Induced by Isoproterenol. FASEB Journal, 2019, 33, 703.3.	0.2	0
36	Proteasome Phosphorylation and Activation by PKA Protects against Cardiac Remodeling in Mice Subjected to Myocardial Infarction. FASEB Journal, 2019, 33, lb477.	0.2	0

#	Article	IF	CITATIONS
37	Postâ€MI Cardiac Remodeling and Malfunction in Mice Are Exacerbated by Cardiomyocyteâ€restricted Ablation of the Uchl1 Gene. FASEB Journal, 2019, 33, 532.9.	0.2	0
38	Cadmium pyrithione suppresses tumor growth in vitro and in vivo through inhibition of proteasomal deubiquitinase. BioMetals, 2018, 31, 29-43.	1.8	9
39	Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis, 2018, 7, 75.	2.1	49
40	Inhibition of Proteasomal Deubiquitinase by Silver Complex Induces Apoptosis in Non-Small Cell Lung Cancer Cells. Cellular Physiology and Biochemistry, 2018, 49, 780-797.	1.1	20
41	Interplay Among Oxidative Stress, Redox Signaling, ER Stress, Autophagy, and Protein Ubiquitylation in Cardiometabolic Disorders. , 2018, , 29-42.		0
42	UBXN2A enhances CHIPâ€mediated proteasomal degradation of oncoprotein mortalinâ€2 in cancer cells. Molecular Oncology, 2018, 12, 1753-1777.	2.1	25
43	Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury. Journal of Clinical Investigation, 2018, 128, 5294-5306.	3.9	32
44	Excessive βetaâ€adrenergic receptor stimulation induces cardiomyocyte necroptosis via a RIP3â€dependent pathway. FASEB Journal, 2018, 32, 616.6.	0.2	0
45	UCHL1 regulates Interleukinâ€6 expression in skeletal muscles. FASEB Journal, 2018, 32, 907.11.	0.2	1
46	Inhibition of Type 1 Phosphodiesterse Confers Therapeutic Benefit to Proteinopathyâ€based HFpEF in Mice. FASEB Journal, 2018, 32, 903.14.	0.2	0
47	Deubiquitinase UCHL1 Regulates Myogenesis in Skeletal Muscles. FASEB Journal, 2018, 32, 769.6.	0.2	0
48	Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death and Disease, 2017, 8, e2585-e2585.	2.7	96
49	Bilirubin neurotoxicity is associated with proteasome inhibition. Cell Death and Disease, 2017, 8, e2877-e2877.	2.7	28
50	Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H304-H319.	1.5	66
51	Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer. Cell Death and Disease, 2017, 8, e2803-e2803.	2.7	65
52	Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 102, 53-60.	0.9	33
53	TFEB activation protects against cardiac proteotoxicity via increasing autophagic flux. Journal of Molecular and Cellular Cardiology, 2017, 113, 51-62.	0.9	72
54	Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. European Journal of Pharmacology, 2017, 815, 147-155.	1.7	39

#	Article	IF	CITATIONS
55	Vascular Spasm: A Newly Unraveled Cause for Cardiovascular Adversity of Proteasome Inhibition. EBioMedicine, 2017, 21, 51-52.	2.7	3
56	Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Experimental and Molecular Pathology, 2017, 103, 267-275.	0.9	44
57	Platinum pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via DUB inhibition-dependent caspase activation and Bcr-Abl downregulation. Cell Death and Disease, 2017, 8, e2913-e2913.	2.7	20
58	Myocardial Upregulation of Cathepsin D by Ischemic Heart Disease Promotes Autophagic Flux and Protects Against Cardiac Remodeling and Heart Failure. Circulation: Heart Failure, 2017, 10, .	1.6	47
59	A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget, 2017, 8, 63232-63246.	0.8	36
60	Murine Myocardial Transcriptome Analysis Reveals a Critical Role of COPS8 in the Gene Expression of Cullin-RING Ligase Substrate Receptors and Redox and Vesicle Trafficking Pathways. Frontiers in Physiology, 2017, 8, 594.	1.3	7
61	Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth <i>via</i> targeting proteasome-associated deubiquitinases. Oncotarget, 2017, 8, 13942-13956.	0.8	25
62	Systemic inhibition of neddylation by 3-day MLN4924 treatment regime does not impair autophagic flux in mouse hearts and brains. American Journal of Cardiovascular Disease, 2017, 7, 134-150.	0.5	8
63	Cell type-specific transcriptome profiling in mammalian brains. Frontiers in Bioscience - Landmark, 2016, 21, 973-985.	3.0	6
64	Nuclear factor erythroid-2 related factor 2 Nrf2 -mediated protein quality control in cardiomyocytes. Frontiers in Bioscience - Landmark, 2016, 21, 192-202.	3.0	25
65	Platinum-containing compound platinum pyrithione is stronger and safer than cisplatin in cancer therapy. Biochemical Pharmacology, 2016, 116, 22-38.	2.0	33
66	A microRNA-mediated decrease in eukaryotic initiation factor 2α promotes cell survival during PS-341 treatment. Scientific Reports, 2016, 6, 21565.	1.6	23
67	Nickel pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via both Bcr/Abl-dependent and Bcr/Abl-independent mechanisms. Journal of Hematology and Oncology, 2016, 9, 129.	6.9	19
68	Mifepristone increases mRNA translation rate, triggers theÂunfolded protein response, increases autophagic flux, andÂkills ovarian cancer cells in combination with proteasomeÂor lysosome inhibitors. Molecular Oncology, 2016, 10, 1099-1117.	2.1	29
69	A novel nickel complex works as a proteasomal deubiquitinase inhibitor for cancer therapy. Oncogene, 2016, 35, 5916-5927.	2.6	52
70	Transcription Factor 7-like 2 Mediates Canonical Wnt/β-Catenin Signaling and c-Myc Upregulation in Heart Failure. Circulation: Heart Failure, 2016, 9, .	1.6	52
71	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
72	The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart. Autophagy, 2016, 12, 601-602.	4.3	8

#	Article	IF	CITATIONS
73	Nrf2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a Setting of Autophagy Insufficiency. Hypertension, 2016, 67, 107-117.	1.3	72
74	Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 2796-2808.	0.8	57
75	Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition. Scientific Reports, 2015, 5, 9694.	1.6	21
76	Novel use of old drug: Anti-rheumatic agent auranofin overcomes imatinib-resistance of chronic myeloid leukemia cells. Cancer Cell & Microenvironment, 2015, 1, .	0.8	8
77	Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil. Future Cardiology, 2015, 11, 177-189.	0.5	6
78	Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. Journal of Molecular and Cellular Cardiology, 2015, 85, 273-281.	0.9	39
79	Entangled in a Heart-Ailing Quandary. Journal of the American College of Cardiology, 2015, 65, 1215-1217.	1.2	Ο
80	NEDD8 Ultimate Buster 1 Long (NUB1L) Protein Suppresses Atypical Neddylation and Promotes the Proteasomal Degradation of Misfolded Proteins. Journal of Biological Chemistry, 2015, 290, 23850-23862.	1.6	29
81	Desmin Filaments and Desmin-Related Myopathy. , 2015, , 281-306.		Ο
82	COP9 Signalosome Controls the Degradation of Cytosolic Misfolded Proteins and Protects Against Cardiac Proteotoxicity. Circulation Research, 2015, 117, 956-966.	2.0	37
83	The interplay between autophagy and the ubiquitin–proteasome system in cardiac proteotoxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 188-194.	1.8	85
84	The COP9 signalosome and cullin-RING ligases in the heart. American Journal of Cardiovascular Disease, 2015, 5, 1-18.	0.5	8
85	The COP9 signalosome and vascular function: intriguing possibilities?. American Journal of Cardiovascular Disease, 2015, 5, 33-52.	0.5	4
86	Ubiquilin-1 Protects Cells from Oxidative Stress and Ischemic Stroke Caused Tissue Injury in Mice. Journal of Neuroscience, 2014, 34, 2813-2821.	1.7	62
87	Gambogic Acid Induces Apoptosis in Imatinib-Resistant Chronic Myeloid Leukemia Cells via Inducing Proteasome Inhibition and Caspase-Dependent Bcr-Abl Downregulation. Clinical Cancer Research, 2014, 20, 151-163.	3.2	116
88	The Proteasome Function Reporter GFPu Accumulates in Young Brains of the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. Cellular and Molecular Neurobiology, 2014, 34, 315-322.	1.7	27
89	Proteasomal and lysosomal protein degradation and heart disease. Journal of Molecular and Cellular Cardiology, 2014, 71, 16-24.	0.9	127
90	Sumo E2 Enzyme UBC9 Is Required for Efficient Protein Quality Control in Cardiomyocytes. Circulation Research, 2014, 115, 721-729.	2.0	59

#	Article	IF	CITATIONS
91	Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington's disease. Journal of Neurochemistry, 2014, 129, 539-547.	2.1	87
92	Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. Journal of Molecular and Cellular Cardiology, 2014, 69, 43-51.	0.9	26
93	A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Scientific Reports, 2014, 4, 5240.	1.6	60
94	Autophagic-Lysosomal Inhibition Compromises Ubiquitin-Proteasome System Performance in a p62 Dependent Manner in Cardiomyocytes. PLoS ONE, 2014, 9, e100715.	1.1	40
95	Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget, 2014, 5, 5453-5471.	0.8	139
96	Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget, 2014, 5, 9118-9132.	0.8	71
97	Defense Against Proteotoxic Stress in the Heart. , 2014, , 187-201.		0
98	Angiotensin II activates the proteasome and stimulates vascular smooth muscle cell proliferation (866.10). FASEB Journal, 2014, 28, 866.10.	0.2	0
99	Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor InÂVitro and InÂVivo. Cell Reports, 2013, 3, 211-222.	2.9	93
100	Ubiquitin receptors and protein quality control. Journal of Molecular and Cellular Cardiology, 2013, 55, 73-84.	0.9	60
101	Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H551-H562.	1.5	44
102	The COP9 Signalosome Is Required for Autophagy, Proteasome-Mediated Proteolysis, and Cardiomyocyte Survival in Adult Mice. Circulation: Heart Failure, 2013, 6, 1049-1057.	1.6	56
103	Posttranslational Modification and Quality Control. Circulation Research, 2013, 112, 367-381.	2.0	73
104	Protein Kinase G Positively Regulates Proteasome-Mediated Degradation of Misfolded Proteins. Circulation, 2013, 128, 365-376.	1.6	118
105	Repeated intermittent administration of a ubiquitous proteasome inhibitor leads to restrictive cardiomyopathy. European Journal of Heart Failure, 2013, 15, 597-598.	2.9	5
106	COP9 Signalosome Subunit Csn8 Is Involved in Maintaining Proper Duration of the G1 Phase. Journal of Biological Chemistry, 2013, 288, 20443-20452.	1.6	16
107	Hepatic Deficiency of COP9 Signalosome Subunit 8 Induces Ubiquitin-Proteasome System Impairment and Bim-Mediated Apoptosis in Murine Livers. PLoS ONE, 2013, 8, e67793.	1.1	10
108	Bortezomib, a Proteasome Inhibitor, Attenuates Angiotensin II-Induced Hypertension and Aortic Remodeling in Rats. PLoS ONE, 2013, 8, e78564.	1.1	21

#	Article	IF	CITATIONS
109	Gambogic acid moderates cardiac responses to chronic hypoxia likely by acting on the proteasome and NF-κB pathway. American Journal of Cardiovascular Disease, 2013, 3, 135-45.	0.5	1
110	Gambogic acid suppresses pressure overload cardiac hypertrophy in rats. American Journal of Cardiovascular Disease, 2013, 3, 227-38.	0.5	6
111	Genetically Induced Moderate Inhibition of the Proteasome in Cardiomyocytes Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice. Circulation Research, 2012, 111, 532-542.	2.0	100
112	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
113	The Ubiquitin–Proteasome System and Cardiovascular Disease. Progress in Molecular Biology and Translational Science, 2012, 109, 295-346.	0.9	77
114	Protein Quality Control in Cardiomyocytes. , 2012, , 353-367.		0
115	L-Carnitine Is an Endogenous HDAC Inhibitor Selectively Inhibiting Cancer Cell Growth In Vivo and In Vitro. PLoS ONE, 2012, 7, e49062.	1.1	70
116	FoxO3 hastens autophagy and shrinks the heart but does not curtail pathological hypertrophy in adult mice. Cardiovascular Research, 2011, 91, 561-562.	1.8	3
117	Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB Journal, 2011, 25, 883-893.	0.2	136
118	p62 Stages an Interplay Between the Ubiquitin-Proteasome System and Autophagy in the Heart of Defense Against Proteotoxic Stress. Trends in Cardiovascular Medicine, 2011, 21, 224-228.	2.3	64
119	Proteasome functional insufficiency in cardiac pathogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2207-H2219.	1.5	65
120	The role of the proteasome in heart disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 141-149.	0.9	47
121	Sanggenon C decreases tumor cell viability associated with proteasome inhibition. Frontiers in Bioscience - Elite, 2011, E3, 1315-1325.	0.9	18
122	COP9 signalosome subunit 8 is required for postnatal hepatocyte survival and effective proliferation. Cell Death and Differentiation, 2011, 18, 259-270.	5.0	18
123	Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition. European Journal of Pharmacology, 2011, 658, 242-247.	1.7	134
124	Autophagy and p62 in cardiac protein quality control. Autophagy, 2011, 7, 1382-1383.	4.3	19
125	Perturbation of Cullin Deneddylation via Conditional Csn8 Ablation Impairs the Ubiquitin–Proteasome System and Causes Cardiomyocyte Necrosis and Dilated Cardiomyopathy in Mice. Circulation Research, 2011, 108, 40-50.	2.0	95
126	COP9 Signalosome Regulates Autophagosome Maturation. Circulation, 2011, 124, 2117-2128.	1.6	102

#	Article	IF	CITATIONS
127	Autophagy and p62 in Cardiac Proteinopathy. Circulation Research, 2011, 109, 296-308.	2.0	177
128	Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. Journal of Clinical Investigation, 2011, 121, 3689-3700.	3.9	169
129	Proteasome malfunction activates macroautophagy in the heart. American Journal of Cardiovascular Disease, 2011, 1, 214-26.	0.5	46
130	Unraveling Enigma in the Z-Disks. Circulation Research, 2010, 107, 321-323.	2.0	5
131	Proteasome functional insufficiency activates the calcineurin–NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovascular Research, 2010, 88, 424-433.	1.8	99
132	The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovascular Research, 2010, 85, 251-252.	1.8	27
133	The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovascular Research, 2010, 85, 253-262.	1.8	106
134	Physiological levels of ATP negatively regulate proteasome function. Cell Research, 2010, 20, 1372-1385.	5.7	126
135	Doxycycline Attenuates Protein Aggregation in Cardiomyocytes and Improves Survival of a Mouse Model of Cardiac Proteinopathy. Journal of the American College of Cardiology, 2010, 56, 1418-1426.	1.2	29
136	Protein quality control in protection against systolic overload cardiomyopathy: the long term role of small heat shock proteins. American Journal of Translational Research (discontinued), 2010, 2, 390-401.	0.0	11
137	Shikonin exerts antitumor activity <i>via</i> proteasome inhibition and cell death induction <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2009, 124, 2450-2459.	2.3	151
138	Activation of the ubiquitin-proteasome system in doxorubicin cardiomyopathy. Current Hypertension Reports, 2009, 11, 389-395.	1.5	54
139	The COP9 signalosome negatively regulates proteasome proteolytic function and is essential to transcription. International Journal of Biochemistry and Cell Biology, 2009, 41, 615-624.	1.2	30
140	Interplay between the ubiquitin-proteasome system and autophagy in proteinopathies. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 1, 127-42.	0.8	37
141	Upregulation of myocardial 11S-activated proteasome in experimental hyperglycemia. Journal of Molecular and Cellular Cardiology, 2008, 44, 618-621.	0.9	47
142	Protein quality control and degradation in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2008, 45, 11-27.	0.9	107
143	A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2541-H2550.	1.5	77
144	Differential Activities of the Ubiquitin–Proteasome System in Neurons versus Glia May Account for the Preferential Accumulation of Misfolded Proteins in Neurons. Journal of Neuroscience, 2008, 28, 13285-13295.	1.7	158

#	Article	IF	CITATIONS
145	αB-Crystallin Suppresses Pressure Overload Cardiac Hypertrophy. Circulation Research, 2008, 103, 1473-1482.	2.0	79
146	Diminished GATA4 Protein Levels Contribute to Hyperglycemia-induced Cardiomyocyte Injury. Journal of Biological Chemistry, 2007, 282, 21945-21952.	1.6	46
147	Cardiac-specific haploinsufficiency of β-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. Journal of Molecular and Cellular Cardiology, 2007, 43, 319-326.	0.9	63
148	Upregulation of γ-catenin compensates for the loss of β-catenin in adult cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H270-H276.	1.5	66
149	Genetic inhibition of cullinâ€based ubiquitin ligase dynamics in adult mouse hearts suffices to cause heart failure (HF). FASEB Journal, 2007, 21, A870.	0.2	0
150	Aberrant protein aggregation is essential forÂaÂmutant desmin toÂimpair theÂproteolytic function ofÂtheÂubiquitin–proteasome system inÂcardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 40, 451-454.	0.9	86
151	A120. Activation of the calcineurin-NFAT pathway in desminopathy mouse hearts: The role of proteasomal malfunction. Journal of Molecular and Cellular Cardiology, 2006, 40, 910.	0.9	0
152	Cardiac specific haploinsufficiency of \hat{l}^2 -catenin attenuates cardiac hypertrophy from aortic constriction. Journal of Molecular and Cellular Cardiology, 2006, 41, 740-740.	0.9	0
153	The ubiquitin-proteasome system in cardiac remodeling and failure. Journal of Molecular and Cellular Cardiology, 2006, 41, 748-748.	0.9	0
154	Nuclear compartmentalization of FAK and FRNK in cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2509-H2515.	1.5	24
155	Heart Failure and Protein Quality Control. Circulation Research, 2006, 99, 1315-1328.	2.0	205
156	GFP reporter mouse models of UPS proteolytic function. FASEB Journal, 2006, 20, 1027-1028.	0.2	3
157	Impairment of the ubiquitinâ€proteasome system in desminopathy mouse hearts. FASEB Journal, 2006, 20, 362-364.	0.2	146
158	Remodeling of gap junctions and slow conduction in a mouse model of desmin-related cardiomyopathy. Cardiovascular Research, 2005, 67, 539-547.	1.8	45
159	Intrasarcoplasmic Amyloidosis Impairs Proteolytic Function of Proteasomes in Cardiomyocytes by Compromising Substrate Uptake. Circulation Research, 2005, 97, 1018-1026.	2.0	145
160	A novel transgenic mouse model reveals deregulation of the ubiquitinâ€proteasome system in the heart by doxorubicin. FASEB Journal, 2005, 19, 2051-2053.	0.2	108
161	Low Thyroid Function Leads to Cardiac Atrophy With Chamber Dilatation, Impaired Myocardial Blood Flow, Loss of Arterioles, and Severe Systolic Dysfunction. Circulation, 2005, 112, 3122-3130.	1.6	154
162	In situ dynamically monitoring the proteolytic function of the ubiquitin-proteasome system in cultured cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1417-H1425.	1.5	62

#	Article	IF	CITATIONS
163	Structural basis of ventricular remodeling: Role of the myocyte. Current Heart Failure Reports, 2004, 1, 5-8.	1.3	10
164	Myocardial expression and redistribution of GRKs in hypertensive hypertrophy and failure. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2004, 282, 13-23.	2.0	26
165	Genetic modification of the heart: chaperones and the cytoskeleton. Journal of Molecular and Cellular Cardiology, 2004, 37, 1097-109.	0.9	52
166	Subcellular Redistribution of Focal Adhesion Kinase and Its Related Nonkinase in Hypertrophic Myocardium. Hypertension, 2003, 41, 1317-1323.	1.3	38
167	αB-Crystallin Modulates Protein Aggregation of Abnormal Desmin. Circulation Research, 2003, 93, 998-1005.	2.0	114
168	Structural Remodeling of Cardiac Myocytes in Hypertrophy and Progression to Failure. Progress in Experimental Cardiology, 2003, , 183-193.	0.0	0
169	Desmin filaments and cardiac disease: Establishing causality. Journal of Cardiac Failure, 2002, 8, S287-S292.	0.7	44
170	Expression of R120C–αB-Crystallin Causes Aberrant Desmin and αB-Crystallin Aggregation and Cardiomyopathy in Mice. Circulation Research, 2001, 89, 84-91.	2.0	282
171	PKA-dependent phosphorylation of cardiac myosin binding protein C in transgenic mice. Cardiovascular Research, 2001, 51, 80-88.	1.8	24
172	Increased Myocardial Rab GTPase Expression. Circulation Research, 2001, 89, 1130-1137.	2.0	92
173	Mouse Model of Desmin-Related Cardiomyopathy. Circulation, 2001, 103, 2402-2407.	1.6	184
174	In Vivo Analysis of an Essential Myosin Light Chain Mutation Linked to Familial Hypertrophic Cardiomyopathy. Circulation Research, 2000, 87, 296-302.	2.0	54
175	Chronic Pressure Overload Cardiac Hypertrophy and Failure in Guinea Pigs: I. Regional Hemodynamics and Myocyte Remodeling. Journal of Molecular and Cellular Cardiology, 1999, 31, 307-317.	0.9	27
176	Chronic Pressure Overload Cardiac Hypertrophy and Failure in Guinea Pigs: II. Cytoskeletal Remodeling. Journal of Molecular and Cellular Cardiology, 1999, 31, 319-331.	0.9	86
177	Chronic Pressure Overload Cardiac Hypertrophy and Failure in Guinea Pigs: III. Intercalated Disc Remodeling. Journal of Molecular and Cellular Cardiology, 1999, 31, 333-343.	0.9	101
178	The Absence of Desmin Leads to Cardiomyocyte Hypertrophy and Cardiac Dilation with Compromised Systolic Function. Journal of Molecular and Cellular Cardiology, 1999, 31, 2063-2076.	0.9	159
179	Formation of Binucleated Cardiac Myocytes in Rat Heart: I. Role of Actin–myosin Contractile Ring. Journal of Molecular and Cellular Cardiology, 1997, 29, 1541-1551.	0.9	93
180	Formation of Binucleated Cardiac Myocytes in Rat Heart: II. Cytoskeletal Organisation. Journal of Molecular and Cellular Cardiology, 1997, 29, 1553-1565.	0.9	64

#	Article	IF	CITATIONS
181	Rapid Transition of Cardiac Myocytes from Hyperplasia to Hypertrophy During Postnatal Development. Journal of Molecular and Cellular Cardiology, 1996, 28, 1737-1746.	0.9	729
182	Myocyte Remodeling During the Progression to Failure in Rats With Hypertension. Hypertension, 1996, 28, 609-614.	1.3	58