

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043756/publications.pdf Version: 2024-02-01

VIINTII

#	Article	IF	CITATIONS
1	Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy, 2019, 59, 50-57.	16.0	334
2	Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 29732-29743.	8.0	309
3	Elastic, Conductive, Polymeric Hydrogels and Sponges. Scientific Reports, 2014, 4, 5792.	3.3	139
4	Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Materials, 2018, 14, 383-391.	18.0	135
5	Sufficient Utilization of Zirconium lons to Improve the Structure and Surface properties of Nickelâ€Rich Cathode Materials for Lithiumâ€Ion Batteries. ChemSusChem, 2018, 11, 1639-1648.	6.8	117
6	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	6.8	113
7	Exposing the {010} Planes by Oriented Self-Assembly with Nanosheets To Improve the Electrochemical Performances of Ni-Rich Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 6407-6414.	8.0	98
8	Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochimica Acta, 2018, 292, 217-226.	5.2	90
9	Renovation of LiCoO 2 with outstanding cycling stability by thermal treatment with Li 2 CO 3 from spent Li-ion batteries. Journal of Energy Storage, 2016, 8, 262-273.	8.1	86
10	Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. Journal of Power Sources, 2018, 396, 734-741.	7.8	82
11	Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries. Journal of Power Sources, 2018, 378, 707-716.	7.8	77
12	High-Rate Structure-Gradient Ni-Rich Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36697-36704.	8.0	77
13	The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries. Journal of Energy Chemistry, 2021, 58, 1-8.	12.9	73
14	The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-Rich cathode materials. Journal of Power Sources, 2019, 441, 227195.	7.8	71
15	Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution. Journal of Energy Chemistry, 2022, 65, 236-253.	12.9	65
16	An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. Journal of Materials Chemistry A, 2017, 5, 24292-24298.	10.3	64
17	Improving the Structure Stability of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ by Surface Perovskite-like La ₂ Ni _{0.5} Li _{0.5} O ₄ Self-Assembling and Subsurface La ³⁺ Doping, ACS Applied Materials & amp: Interfaces, 2019, 11, 36751-36762.	8.0	59
18	Strategies of Removing Residual Lithium Compounds on the Surface of <scp>Niâ€Rich</scp> Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 189-198.	4.9	52

Yun Lu

#	Article	IF	CITATIONS
19	Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. ACS Applied Materials & Interfaces, 2017, 9, 8669-8678.	8.0	50
20	Riveting Dislocation Motion: The Inspiring Role of Oxygen Vacancies in the Structural Stability of Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2020, 12, 37208-37217.	8.0	49
21	Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochimica Acta, 2018, 260, 986-993.	5.2	44
22	A Universal Method for Enhancing the Structural Stability of Ni-Rich Cathodes Via the Synergistic Effect of Dual-Element Cosubstitution. ACS Applied Materials & Interfaces, 2021, 13, 24925-24936.	8.0	43
23	Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials. ACS Applied Materials & Interfaces, 2017, 9, 8641-8648.	8.0	38
24	Hand-in-Hand Reinforced rGO Film Used as an Auxiliary Functional Layer for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12544-12553.	8.0	36
25	Dendrimer-linked, renewable and magnetic carbon nanotube aerogels. Materials Horizons, 2014, 1, 232-236.	12.2	35
26	The Effects of Trace Yb Doping on the Electrochemical Performance of Liâ€Rich Layered Oxides. ChemSusChem, 2019, 12, 2294-2301.	6.8	35
27	Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides. Journal of Power Sources, 2017, 359, 226-233.	7.8	32
28	Improved Stability of Layered and Porous Nickelâ€Rich Cathode Materials by Relieving the Accumulation of Inner Stress. ChemSusChem, 2020, 13, 426-433.	6.8	31
29	Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. Journal of Energy Chemistry, 2021, 60, 104-110.	12.9	31
30	Electron bridging structure glued yolk-shell hierarchical porous carbon/sulfur composite for high performance Li-S batteries. Electrochimica Acta, 2018, 292, 199-207.	5.2	27
31	Roles of Fastâ€ion Conductor LiTaO ₃ Modifying Niâ€rich Cathode Material for Liâ€ion Batteries. ChemSusChem, 2021, 14, 1955-1961.	6.8	26
32	Advances and Prospects of Surface Modification on <scp>Nickelâ€Rich</scp> Materials for <scp>Lithiumâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1817-1831.	4.9	24
33	CF@rGO/PPy-S Hybrid Foam with Paper Window-like Microstructure as Freestanding and Flexible Cathode for the Lithium–Sulfur Battery. ACS Applied Energy Materials, 2019, 2, 4151-4158.	5.1	20
34	UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material. Journal of Energy Chemistry, 2020, 50, 378-386.	12.9	19
35	Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with an In Situ-Formed LiBO ₂ /B ₂ O ₃ Hybrid Coating Layer. ACS Applied Energy Materials, 2022, 5, 2231-2241.	5.1	19
36	Clean the Ni-Rich Cathode Material Surface With Boric Acid to Improve Its Storage Performance. Frontiers in Chemistry, 2020, 8, 573.	3.6	18

Yun Lu

#	Article	IF	CITATIONS
37	Synthesis and physicochemical properties of graphene/ZrO ₂ composite aerogels. RSC Advances, 2015, 5, 11738-11744.	3.6	17
38	High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs. ACS Applied Materials & Interfaces, 2021, 13, 6286-6297.	8.0	17
39	Densely Packed 3D Corrugated Papery Electrodes as Polysulfide Reservoirs for Lithium–Sulfur Battery with Ultrahigh Volumetric Capacity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5648-5661.	6.7	15
40	Synthesizing LiNi0.8Co0.1Mn0.1O2 with novel shell-pore structure for enhanced rate performance. Journal of Alloys and Compounds, 2019, 789, 736-743.	5.5	13
41	Interfacial Degradation and Optimization of Liâ€rich Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 402-420.	4.9	11
42	Sublimated Seâ€Induced Formation of Dualâ€Conductive Surface Layers for Highâ€Performance Niâ€Rich Layered Cathodes. ChemElectroChem, 2021, 8, 4207-4217.	3.4	7