
Carlos M Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmentally Friendly Conductive Screenâ€Printable Inks Based on Nâ€Doped Graphene and Polyvinylpyrrolidone. Advanced Engineering Materials, 2022, 24, 2101258.	1.6	8
2	Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends. Electrochemistry Communications, 2022, 135, 107210.	2.3	26
3	Silk fibroin and sericin polymer blends for sustainable battery separators. Journal of Colloid and Interface Science, 2022, 611, 366-376.	5.0	19
4	Environmentally friendly carrageenan-based ionic-liquid driven soft actuators. Materials Advances, 2022, 3, 937-945.	2.6	4
5	Solution processing of piezoelectric unconventional structures. , 2022, , 375-439.		3
6	Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices. ACS Applied Materials & Interfaces, 2022, 14, 15494-15503.	4.0	13
7	Using Simulation to Evaluate a Tube Perception Algorithm for Bin Picking. Robotics, 2022, 11, 46.	2.1	3
8	Silk Fibroin Nanocomposites with Indium Tin Oxide toward Sustainable Capacitive Touch Sensing Applications. ACS Applied Electronic Materials, 2022, 4, 1901-1909.	2.0	7
9	Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS Omega, 2022, 7, 14457-14464.	1.6	36
10	Metal organic framework modified poly(vinylidene fluoride-co-hexafluoropropylene) separator membranes to improve lithium-ion battery capacity fading. Chemical Engineering Journal, 2022, 443, 136329.	6.6	20
11	Template-free hydrothermal synthesis of lithium iron tavorite with complex morphologies driven by phase transformation. Nano Structures Nano Objects, 2022, 30, 100870.	1.9	0
12	Carrageenan based printable magnetic nanocomposites for actuator applications. Composites Science and Technology, 2022, 224, 109485.	3.8	8
13	Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. Polymer, 2022, 252, 124943.	1.8	7
14	Carrageenan-Based Hybrid Materials with Ionic Liquids for Sustainable and Recyclable Printable Pressure Sensors. ACS Sustainable Chemistry and Engineering, 2022, 10, 8631-8640.	3.2	6
15	Lithium-Ion Battery Solid Electrolytes Based on Poly(vinylidene Fluoride)–Metal Thiocyanate Ionic Liquid Blends. ACS Applied Polymer Materials, 2022, 4, 5909-5919.	2.0	5
16	On the development of a collaborative robotic system for industrial coating cells. International Journal of Advanced Manufacturing Technology, 2021, 115, 853-871.	1.5	9
17	Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102032.	6.1	8
18	Crystal morphology control of synthetic giniite for enhanced photo-Fenton activity against the emerging pollutant metronidazole. Chemosphere, 2021, 262, 128300.	4.2	25

#	Article	IF	CITATIONS
19	Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation. Journal of Hazardous Materials, 2021, 403, 123675.	6.5	27
20	Allâ€Printed Smart Label with Integrated Humidity Sensors and Power Supply. Advanced Engineering Materials, 2021, 23, 2001229.	1.6	7
21	Optimized Printed Cathode Electrodes for High Performance Batteries. Energy Technology, 2021, 9, .	1.8	15
22	Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. Journal of Colloid and Interface Science, 2021, 582, 376-386.	5.0	63
23	Improved electrochemical performance of LiMn1.5M0.5O4 (M=Ni, Co, Cu) based cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 853, 157208.	2.8	23
24	Piezoelectric Polymer Composites for Sensors and Actuators. , 2021, , 473-486.		7
25	Overview on lightweight, multifunctional materials. , 2021, , 1-24.		6
26	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	2.6	27
27	High dielectric constant poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) for capacitive pressure and bending sensors. Polymer, 2021, 214, 123349.	1.8	13
28	Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. European Polymer Journal, 2021, 146, 110269.	2.6	3
29	All printed soft actuators based on ionic liquid/polymer hybrid materials. Applied Materials Today, 2021, 22, 100928.	2.3	16
30	Porous Composite Bifunctional Membranes for Lithiumâ€lon Battery Separator and Photocatalytic Degradation Applications: Toward Multifunctionality for Circular Economy. Advanced Energy and Sustainability Research, 2021, 2, 2100046.	2.8	7
31	Recent Advances on Materials for Lithium-Ion Batteries. Energies, 2021, 14, 3145.	1.6	26
32	Comparative Assessment of Ionic Liquidâ€Based Soft Actuators Prepared by Film Casting Versus Direct Ink Writing. Advanced Engineering Materials, 2021, 23, 2100411.	1.6	9
33	Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials, 2021, 37, 433-465.	9.5	210
34	Crystallization Monitoring of Semicrystalline Poly(vinylidene fluoride)/1-Ethyl-3-methylimidazolium Hexafluorophosphate [Emim][PF ₆] Ionic Liquid Blends. Crystal Growth and Design, 2021, 21, 4406-4416.	1.4	8
35	Magnetically active lithium-ion batteries towards battery performance improvement. IScience, 2021, 24, 102691.	1.9	27
36	Directâ€Inkâ€Writing of Electroactive Polymers for Sensing and Energy Storage Applications. Macromolecular Materials and Engineering, 2021, 306, 2100372.	1.7	12

#	Article	IF	CITATIONS
37	Patterned separator membranes with pillar surface microstructures for improved battery performance. Journal of Colloid and Interface Science, 2021, 596, 158-172.	5.0	4
38	Thermal degradation behavior of ionic liquid/ fluorinated polymer composites: Effect of polymer type and ionic liquid anion and cation. Polymer, 2021, 229, 123995.	1.8	7
39	Broadband dielectric response of silk Fibroin/BaTiO3 composites: Influence of nanoparticle size and concentration. Composites Science and Technology, 2021, 213, 108927.	3.8	10
40	Recent advances on battery separators based on poly(vinylidene fluoride) and its copolymers for lithium-ion battery applications. Current Opinion in Electrochemistry, 2021, 29, 100752.	2.5	21
41	Lithium bis(trifluoromethanesulfonyl)imide blended in polyurethane acrylate photocurable solid polymer electrolytes for lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 485-496.	7.1	19
42	Influence of cellulose nanocrystal surface functionalization on the bending response of cellulose nanocrystal/ionic liquid soft actuators. Physical Chemistry Chemical Physics, 2021, 23, 6710-6716.	1.3	3
43	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Applied Materials & Interfaces, 2021, 13, 48889-48900.	4.0	21
44	Smart and Functional Materials for Lithium-Ion Battery. Energies, 2021, 14, 7713.	1.6	0
45	Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries. Journal of Membrane Science, 2020, 598, 117678.	4.1	33
46	Metal–Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11907-11919.	2.5	51
47	Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer. Materials Today Energy, 2020, 18, 100494.	2.5	18
48	Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(ZrO·53Ti0.47)O3 composites. Polymer, 2020, 204, 122811.	1.8	7
49	Silk Fibroin Based Magnetic Nanocomposites for Actuator Applications. Advanced Engineering Materials, 2020, 22, 2070023.	1.6	5
50	Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100001.	1.6	45
51	High dielectric constant UV curable polyurethane acrylate/indium tin oxide composites for capacitive sensing. Composites Science and Technology, 2020, 199, 108363.	3.8	27
52	Magnetic and high-dielectric-constant nanoparticle polymer tri-composites for sensor applications. Journal of Materials Science, 2020, 55, 16234-16246.	1.7	10
53	Optically transparent silk fibroin/silver nanowire composites for piezoresistive sensing and object recognitions. Journal of Materials Chemistry C, 2020, 8, 13053-13062.	2.7	13
54	Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Materials Today Sustainability, 2020, 9, 100041.	1.9	9

#	Article	IF	CITATIONS
55	Synthetic polymer-based membranes for lithium-ion batteries. , 2020, , 383-415.		1
56	Silk Fibroin Based Magnetic Nanocomposites for Actuator Applications. Advanced Engineering Materials, 2020, 22, 2000111.	1.6	10
57	Recent advances and future challenges in printed batteries. Energy Storage Materials, 2020, 28, 216-234.	9.5	89
58	lonic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Advanced Functional Materials, 2020, 30, 1909736.	7.8	197
59	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	1.3	24
60	Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Crystal Growth and Design, 2020, 20, 4967-4979.	1.4	12
61	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. , 2020, , 1-43.		7
62	The role of CNC surface modification on the structural, thermal and electrical properties of poly(vinylidene fluoride) nanocomposites. Cellulose, 2020, 27, 3821-3834.	2.4	16
63	Tailoring Electrical and Mechanical Properties of All-Natural Polymer Composites for Environmentally Friendlier Electronics. ACS Applied Polymer Materials, 2020, 2, 1448-1457.	2.0	12
64	Electroactive Î ³ -Phase, Enhanced Thermal and Mechanical Properties and High Ionic Conductivity Response of Poly (Vinylidene Fluoride)/Cellulose Nanocrystal Hybrid Nanocomposites. Materials, 2020, 13, 743.	1.3	15
65	Detecting and Solving Tube Entanglement in Bin Picking Operations. Applied Sciences (Switzerland), 2020, 10, 2264.	1.3	17
66	Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components. Progress in Energy and Combustion Science, 2020, 79, 100846.	15.8	103
67	Perception of Entangled Tubes for Automated Bin Picking. Advances in Intelligent Systems and Computing, 2020, , 619-631.	0.5	8
68	Ionic liquid based Fluoropolymer solid electrolytes for Lithium-ion batteries. Sustainable Materials and Technologies, 2020, 25, e00176.	1.7	26
69	Theoretical simulation of the influence of cathode formulation on lithium-ion battery performance. AIP Conference Proceedings, 2019, , .	0.3	0
70	Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019, 22, 346-375.	9.5	225
71	Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials. ACS Applied Materials & Interfaces, 2019, 11, 30197-30206.	4.0	34
72	Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries. Energy, 2019, 185, 1250-1262.	4.5	20

#	Article	IF	CITATIONS
73	Environmentally Friendly Printable Piezoelectric Inks and Their Application in the Development of All-Printed Touch Screens. ACS Applied Electronic Materials, 2019, 1, 1678-1687.	2.0	32
74	Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. Journal of Physical Chemistry C, 2019, 123, 27917-27926.	1.5	50
75	Ceramic nanoparticles and carbon nanotubes reinforced thermoplastic materials for piezocapacitive sensing applications. Composites Science and Technology, 2019, 183, 107804.	3.8	10
76	Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. Energy, 2019, 172, 68-78.	4.5	39
77	Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Materials, 2019, 21, 124-135.	9.5	17
78	Collaborative Welding System using BIM for Robotic Reprogramming and Spatial Augmented Reality. Automation in Construction, 2019, 106, 102825.	4.8	61
79	Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3749-3761.	2.5	58
80	Optimized silk fibroin piezoresistive nanocomposites for pressure sensing applications based on natural polymers. Nanoscale Advances, 2019, 1, 2284-2292.	2.2	29
81	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer, 2019, 171, 58-69.	1.8	17
82	Mesoporous poly(vinylidene fluoride-co-trifluoroethylene) membranes for lithium-ion battery separators. Electrochimica Acta, 2019, 301, 97-106.	2.6	26
83	Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
84	Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene) Tj ETQq0 0 0 rgBT and Technologies, 2019, 21, e00104.	/Overlock 1.7	2 10 Tf 50 30 35
85	Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer, 2019, 169, 138-147.	1.8	51
86	Thermal activation of charge carriers in ionic and electronic semiconductor β-Ag ^I V ^V O ₃ and β-Ag ^I V ^V O ₃ @V ^V _{1.6} V ^{IV} _{0.4<!--<br-->composite xerogels. RSC Advances, 2019, 9, 42439-42449.}	sub>O <su< td=""><td>b¹4.8</td></su<>	b ¹ 4.8
87	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	2.6	49
88	Map-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 93, 533-546.	2.0	61
89	Advances in Cathode Nanomaterials for Lithium-Ion Batteries. , 2019, , 105-145.		Ο

90 Dielectric Analysis of Different Natural and Synthetic Polymer Types. , 2019, , 217-243.

0

#	Article	IF	CITATIONS
91	Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 2018, 143, 164-172.	1.8	32
92	Dynamic Modeling of Biological Treatment of Leachates from Solid Wastes. Environmental Modeling and Assessment, 2018, 23, 165-173.	1.2	7
93	Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. ACS Applied Materials & Interfaces, 2018, 10, 5385-5394.	4.0	50
94	Computer simulation of the influence of thermal conditions on the performance of conventional and unconventional lithium-ion battery geometries. Energy, 2018, 149, 262-278.	4.5	17
95	Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 588-597.	2.4	11
96	Evaluation of the Physicochemical Properties and Active Response of Piezoelectric Poly(vinylidene) Tj ETQq0 0 0 Chemistry C, 2018, 122, 11433-11441.	rgBT /Ove 1.5	rlock 10 Tf 50 8
97	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	5.5	466
98	Improved electrochemical performance of rare earth doped LiMn1.5-xNi0.5RExO4 based composite cathodes for lithium-ion batteries. Composites Part B: Engineering, 2018, 139, 55-63.	5.9	15
99	Piezoelectric Polymers and Polymer Composites for Sensors and Actuators. , 2018, , .		0
100	<i>Bombyx mori</i> Silkworm Cocoon Separators for Lithiumâ€Ion Batteries with Superior Safety and Sustainability. Advanced Sustainable Systems, 2018, 2, 1800098.	2.7	15
101	Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. Journal of Membrane Science, 2018, 564, 842-851.	4.1	68
102	Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes, 2018, 8, 45.	1.4	125
103	Poly(styrene–butene/ethylene–styrene): A New Polymer Binder for High-Performance Printable Lithium-Ion Battery Electrodes. ACS Applied Energy Materials, 2018, 1, 3331-3341.	2.5	12
104	Synthesis and improved electrochemical performance of LiMn2–xGdxO4 based cathodes. Solid State Ionics, 2017, 300, 18-25.	1.3	15
105	Mild hydrothermal synthesis and crystal morphology control of LiFePO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml53" display="inline" overflow="scroll" altimg="si1.gif"><mml:msub><mml:mrow /><mml:mrow></mml:mrow></mml:mrow </mml:msub>by lithium nitrate. Nano</mml:math 	1.9	11
106	Structures Nano Objects, 2017, 11, 62-07. Preparation of Poly(vinylidene fluoride) Lithium-Ion Battery Separators and Their Compatibilization with Ionic Liquid - A Green Solvent Approach. ChemistrySelect, 2017, 2, 5394-5402.	0.7	30
107	Crystal Morphology Control of Synthetic Giniite by Alkaline Cations and pH Variations. Crystal Growth and Design, 2017, 17, 4710-4714.	1.4	11
108	On the Relevance of the Polar β-Phase of Poly(vinylidene fluoride) for High Performance Lithium-Ion Battery Separators. Journal of Physical Chemistry C, 2017, 121, 26216-26225.	1.5	53

#	Article	IF	CITATIONS
109	Thermal analysis of lithium-ion batteries with square frame geometries by theoretical simulations. AIP Conference Proceedings, 2017, , .	0.3	0
110	Hydrophobic/hydrophilic P(VDFâ€TrFE)/PHEA polymer blend membranes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 672-679.	2.4	4
111	Influence of Solvent Evaporation Rate in the Preparation of Carbonâ€Coated Lithium Iron Phosphate Cathode Films on Battery Performance. Energy Technology, 2016, 4, 573-582.	1.8	34
112	Evaluation and optimization of the performance of frame geometries for lithium-ion battery application by computer simulation. AIP Conference Proceedings, 2016, , .	0.3	1
113	A green solvent strategy for the development of piezoelectric poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlc 104, 183-189.	ock 10 Tf 5 3.3	0 587 Td (flu 42
114	High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4. Electrochimica Acta, 2016, 196, 92-100.	2.6	50
115	Improved performance of rare earth doped LiMn ₂ O ₄ cathodes for lithium-ion battery applications. New Journal of Chemistry, 2016, 40, 6244-6252.	1.4	58
116	Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy. Langmuir, 2016, 32, 5267-5276.	1.6	23
117	High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries. Journal of Power Sources, 2016, 334, 65-77.	4.0	66
118	Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. Journal of Non-Crystalline Solids, 2016, 453, 8-15.	1.5	78
119	Computer simulation evaluation of the geometrical parameters affecting the performance of two dimensional interdigitated batteries. Journal of Electroanalytical Chemistry, 2016, 780, 1-11.	1.9	13
120	Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO 4 based cathodes. Solid State Ionics, 2016, 295, 57-64.	1.3	35
121	Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun polyimide gel electrolyte membranes. Journal of Electroanalytical Chemistry, 2016, 778, 57-65.	1.9	16
122	Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.	1.7	40
123	Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. European Polymer Journal, 2016, 85, 445-451.	2.6	39
124	Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance. Composites Part B: Engineering, 2016, 96, 94-102.	5.9	48
125	Computer simulations of the influence of geometry in the performance of conventional and unconventional lithium-ion batteries. Applied Energy, 2016, 165, 318-328.	5.1	36
126	Robust 3/6 DoF self-localization system with selective map update for mobile robot platforms. Robotics and Autonomous Systems, 2016, 76, 113-140.	3.0	20

#	Article	IF	CITATIONS
127	Phase morphology and crystallinity of poly(vinylidene fluoride)/poly(ethylene oxide) piezoelectric blend membranes. Materials Today Communications, 2015, 4, 214-221.	0.9	18
128	Advances and Future Challenges in Printed Batteries. ChemSusChem, 2015, 8, 3539-3555.	3.6	108
129	Tailoring poly(vinylidene fluoride- <i>co</i> -chlorotrifluoroethylene) microstructure and physicochemical properties by exploring its binary phase diagram with dimethylformamide. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 761-773.	2.4	36
130	Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Applied Physics A: Materials Science and Processing, 2015, 120, 731-743.	1.1	16
131	Modeling separator membranes physical characteristics for optimized lithium ion battery performance. Solid State Ionics, 2015, 278, 78-84.	1.3	20
132	Polymer composites and blends for battery separators: State of the art, challenges and future trends. Journal of Power Sources, 2015, 281, 378-398.	4.0	211
133	Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. Journal of Non-Crystalline Solids, 2015, 412, 16-23.	1.5	53
134	Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose, 2015, 22, 1911-1929.	2.4	49
135	Effect of the degree of porosity on the performance of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Solid State Ionics, 2015, 280, 1-9.	50 427 To 1.3	d (fluoride-t 33
136	Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Advances, 2015, 5, 90428-90436.	1.7	39
137	State of the art and open questions on cathode preparation based on carbon coated lithium iron phosphate. Composites Part B: Engineering, 2015, 83, 333-345.	5.9	58
138	Effect of Ionic Liquid Anion Type in the Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene fluorideâ€ŧrifluoroethylene). Electroanalysis, 2015, 27, 457-464.	1.5	27
139	Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations. Journal of Electroanalytical Chemistry, 2015, 739, 97-110.	1.9	72
140	Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 2014, 268, 54-67.	1.3	32
141	Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose, 2014, 21, 4531-4544.	2.4	34
142	Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. Journal of Power Sources, 2014, 245, 779-786.	4.0	139
143	Evaluation of dielectric models for ceramic/polymer composites: Effect of filler size and concentration. Journal of Non-Crystalline Solids, 2014, 387, 6-15.	1.5	78
144	Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polymer Testing, 2014, 40, 245-255.	2.3	84

ARTICLE IF CITATIONS Influence of different salts in poly(vinylidene fluoride-co-trifluoroethylene) electrolyte separator 145 membranes for battery applications. Journal of Electroanalytical Chemistry, 2014, 727, 125-134. Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in 146 4.0 37 the performance of Li-ion batteries. Journal of Power Sources, 2014, 263, 29-36. Li-ion battery separator membranes based on barium titanate and poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 2.6 276-284. Thermal degradation of Pb(Zr0.53Ti0.47)O3/poly(vinylidene fluoride) composites as a function of 148 2.0 9 ceramic grain size and concentration. Journal of Thermal Analysis and Calorimetry, 2013, 114, 757-763. Composition-dependent physical properties of poly[(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 Td (fluoride)-co-tri 149 1.7 36 3494-3504. Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery 150 1.9 66 separators. Journal of Electroanalytical Chemistry, 2013, 689, 223-232. Li-ion battery separator membranes based on poly(vinylidene fluoride-trifluoroethylene)/carbon nanotube composites. Solid State Ionics, 2013, 249-250, 63-71. 1.3 24 Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation 152 1.2 28 with the crystalline polymer phase formation. Thermochimica Acta, 2013, 574, 19-25. Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics, 2013, 253, 1.3 143-150. Interface characterization and thermal degradation of ferrite/poly(vinylidene fluoride) multiferroic 154 1.7 51 nanocomposites. Journal of Materials Science, 2013, 48, 2681-2689. Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite 1.3 104 composites. Solid State Ionics, 2013, 235, 42-50. Evaluation of the main processing parameters influencing the performance of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 156 1.2 33 2013, 17, 861-870. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion 266 battery applications. RSC Advances, 2013, 3, 11404. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators 158 2.6 39 in lithium-ion applications. Electrochimica Acta, 2013, 88, 473-476. Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. Journal of Materials Science, 2013, 48, 6833-6840. Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials 160 1.7 67 (Bristol), 2013, 8, 065009. Preparation of Magnetoelectric Composites by Nucleation of the Electroactive <l>l^2</l>-Phase of Poly(vinylidene fluoride) by NiZnFe<SUB>2</SUB>O<SUB>4</SUB> Nanoparticles. Sensor Letters, 2013, 11, 110-114. 0.4 0.3 20

Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for 162 Lithium-Ion Battery Applications. Ferroelectrics, 2012, 430, 103-107.

#		Article	IF	CITATIONS
16	3	Nanoparticle Dispersion and Electroactive Phase Content in Polyvinylidene Fluoride/Ni0.5Zn0.5Fe2O4 Nanocomposites for Magnetoelectric Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 6845-6849.	0.9	9
16	4	Effect of Zeolite Content in the Electrical, Mechanical and Thermal Degradation Response of Poly(vinylidene fluoride)/NaY Zeolite Composites. Journal of Nanoscience and Nanotechnology, 2012, 12, 6804-6810.	0.9	19
16	5	Porous Membranes of Montmorillonite/Poly(vinylidene fluorideâ€ŧrifluorethylene) for Liâ€ŀon Battery Separators. Electroanalysis, 2012, 24, 2147-2156.	1.5	55
16	6	Improving the optical and electroactive response of poly(vinylidene fluoride–trifluoroethylene) spin-coated films for sensor and actuator applications. Smart Materials and Structures, 2012, 21, 085020.	1.8	56
16	7	Microporous Poly(Vinylidene Fluoride – Trifluoroethylene)/Zeolite Membranes for Lithium-Ion Battery Applications. Procedia Engineering, 2012, 44, 983-984.	1.2	1
16	8	[P1.034] Comparing Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene Fluoride –) Tj ETQqO O 751-752.	0 rgBT /O 1.2	verlock 10 ⁻ 0
16	9	On the origin of the electroactive poly(vinylidene fluoride) \hat{l}^2 -phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 2012, 14, 2807.	1.3	242
17	0	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	0.4	20
17	1	Correlation between Crystallization Kinetics and Electroactive Polymer Phase Nucleation in Ferrite/Poly(vinylidene fluoride) Magnetoelectric Nanocomposites. Journal of Physical Chemistry B, 2012, 116, 794-801.	1.2	88
17	2	Influence of filler size and concentration on the low and high temperature dielectric response of poly(vinylidene fluoride) /Pb(Zr0.53Ti0.47)O3 composites. Journal of Polymer Research, 2012, 19, 1.	1.2	17
17	3	Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Materials Chemistry and Physics, 2012, 131, 698-705.	2.0	130
17	4	Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators. Journal of Membrane Science, 2012, 407-408, 193-201.	4.1	110
17	5	Effect of the microsctructure and lithium-ion content in poly[(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 applications. Solid State Ionics, 2012, 217, 19-26.	Tf 50 267 1.3	Td (fluoride 29
17	6	Effect of filler size and concentration on the structure and properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 1.7	50,222 Td (f
17	7	Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. Smart Materials and Structures, 2011, 20, 087002.	1.8	116
17	8	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	2.8	115
17	9	Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. European Polymer Journal, 2011, 47, 2442-2450.	2.6	66

Nucleation of the Electroactive Î³ Phase and Enhancement of the Optical Transparency in Low Filler
Content Poly(vinylidene)/Clay Nanocomposites. Journal of Physical Chemistry C, 2011, 115, 18076-18082.

#	Article	IF	CITATIONS
181	Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing. Journal of Polymer Research, 2011, 18, 1451-1457.	1.2	64
182	Nucleation of electroactive β-phase poly(vinilidene fluoride) withÂCoFe2O4 and NiFe2O4 nanofillers: a new method forÂtheÂpreparation of multiferroic nanocomposites. Applied Physics A: Materials Science and Processing, 2011, 103, 233-237.	1.1	165
183	Thermal, dielectrical and mechanical response of $\hat{l}\pm$ and \hat{l}^2 -poly(vinilydene fluoride)/Co-MgO nanocomposites. Nanoscale Research Letters, 2011, 6, 257.	3.1	18
184	Nucleation of the electroactive phase of poly(vinylidene fluoride) by ferrite nanoparticles: surface versus size effects. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
185	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	2.8	16
186	Organic functionalization of carbon nanofibers for composite applications. Polymer Composites, 2010, 31, 369-376.	2.3	6
187	Functionally graded electroactive Poly(vinylidene fluoride) polymers. International Journal of Materials and Product Technology, 2010, 39, 178.	0.1	5
188	Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 2010, 45, 1328-1335.	1.7	41
189	Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 2010, 356, 2127-2133.	1.5	33
190	Effect of the ceramic grain size and concentration onÂtheÂdynamical mechanical and dielectric behavior ofÂpoly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A: Materials Science and Processing, 2009, 96, 899-908.	1.1	73
191	The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon, 2009, 47, 2590-2599.	5.4	124
192	X-Ray Image Detector Based on Light Guides and Scintillators. IEEE Sensors Journal, 2009, 9, 1154-1159.	2.4	15
193	PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films, 2008, 517, 1161-1166.	0.8	48
194	Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon. Journal of Non-Crystalline Solids, 2008, 354, 2585-2589.	1,5	25
195	Microscopic origin of the high-strain mechanical response of poled and non-poled poly(vinylidene) Tj ETQq1 1 0.7	84314 rgi 1.5	BT_/Overlock
196	Effect of Poling on the Mechanical Properties of β-Poly(Vinylidene Fluoride). Materials Science Forum, 2006, 514-516, 951-955.	0.3	6
197	Poling of β-poly(vinylidene fluoride): dielectric and IR spectroscopy studies. E-Polymers, 2005, 5, .	1.3	18
198	Sustainable lithiumâ€ion battery separators based on poly(3â€hydroxybutyrateâ€coâ€hydroxyvalerate) pristine and composite electrospun membranes. Energy Technology, 0, , 2100761.	1.8	4

#	Article	IF	CITATIONS
199	Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene): A New Binder for Conventional and Printable Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .	2.5	5
200	Three-Dimensional Printing for Solid-State Batteries. ACS Symposium Series, 0, , 331-350.	0.5	0