
Thaneshwor P Kaloni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials, 2017, 29, 10248-10283.	3.2	286
2	Strain engineering of WS ₂ , WSe ₂ , and WTe ₂ . RSC Advances, 2014, 4, 34561.	1.7	279
3	Tuning the Structural, Electronic, and Magnetic Properties of Germanene by the Adsorption of 3d Transition Metal Atoms. Journal of Physical Chemistry C, 2014, 118, 25200-25208.	1.5	230
4	Large Enhancement and Tunable Band Gap in Silicene by Small Organic Molecule Adsorption. Journal of Physical Chemistry C, 2014, 118, 23361-23367.	1.5	162
5	Hole doped Dirac states in silicene by biaxial tensile strain. Journal of Applied Physics, 2013, 113, .	1.1	117
6	Stability of germanene under tensile strain. Chemical Physics Letters, 2013, 583, 137-140.	1.2	92
7	Electronic structure of superlattices of graphene and hexagonal boron nitride. Journal of Materials Chemistry, 2012, 22, 919-922.	6.7	90
8	Materials properties of out-of-plane heterostructures of MoS2-WSe2 and WS2-MoSe2. Applied Physics Letters, 2016, 108, .	1.5	79
9	Quantum spin Hall states in graphene interacting with WS2 or WSe2. Applied Physics Letters, 2014, 105, .	1.5	67
10	Weak interaction between germanene and GaAs(0001) by H intercalation: A route to exfoliation. Journal of Applied Physics, 2013, 114, 184307.	1.1	52
11	Oxidation of monovacancies in graphene by oxygen molecules. Journal of Materials Chemistry, 2011, 21, 18284.	6.7	50
12	Induced magnetism in transition metal intercalated graphitic systems. Journal of Materials Chemistry, 2011, 21, 18681.	6.7	46
13	Electrically Engineered Band Gap in Two-Dimensional Ge, Sn, and Pb: A First-Principles and Tight-Binding Approach. Journal of Physical Chemistry C, 2015, 119, 11896-11902.	1.5	41
14	Band gap modulation in polythiophene and polypyrrole-based systems. Scientific Reports, 2016, 6, 36554.	1.6	41
15	Structural and Electronic Properties of Pristine and Doped Polythiophene: Periodic versus Molecular Calculations. Journal of Physical Chemistry C, 2015, 119, 3979-3989.	1.5	39
16	Charge carrier density in Li-intercalated graphene. Chemical Physics Letters, 2012, 534, 29-33.	1.2	37
17	Modelling magnetism of C at O and B monovacancies in graphene. Carbon, 2013, 64, 281-287.	5.4	35
18	Substrate-enhanced superconductivity in Li-decorated graphene. Europhysics Letters, 2013, 104, 47013.	0.7	35

#	Article	IF	CITATIONS
19	COMPARATIVE STUDY OF ELECTRONIC PROPERTIES OF GRAPHITE AND HEXAGONAL BORON NITRIDE (h- BN) USING PSEUDOPOTENTIAL PLANE WAVE METHOD. Modern Physics Letters B, 2011, 25, 1855-1866.	1.0	26
20	K-intercalated carbon systems: Effects of dimensionality and substrate. Europhysics Letters, 2012, 98, 67003.	0.7	26
21	Mechanism of Si intercalation in defective graphene on SiC. Journal of Materials Chemistry, 2012, 22, 23340.	6.7	25
22	Fluorinated monovacancies in graphene: Even-odd effect. Europhysics Letters, 2012, 100, 37003.	0.7	12
23	Ge-intercalated graphene: The origin of the p-type to n-type transition. Europhysics Letters, 2012, 99, 57002.	0.7	10
24	Pseudo Dirac dispersion in Mn-intercalated graphene on SiC. Chemical Physics Letters, 2013, 578, 81-84.	1.2	8
25	Topological phase in oxidized zigzag stanene nanoribbons. AIP Advances, 2016, 6, 095019.	0.6	8